Skip to main content
Log in

Quest for minor but key chlorophyll molecules in photosynthetic reaction centers – unusual pigment composition in the reaction centers of the chlorophyll d-dominated cyanobacterium Acaryochloris marina

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A short overview, based on our own findings, is given of the minor pigments that function as key components in photosynthesis. Recently, we found the presence of chlorophyll a, chlorophyll d′ and pheophytin a as minor pigments in the chlorophyll d-dominated cyanobacterium Acaryochloris marina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyama M, Kobayashi M, Kise H, Hara M, Wakao N and Shimada K (1998) Pigment composition of the reaction center complex isolated from an acidophilic bacterium Acidiphilium rubrum grown at pH 3.5. Photomed Photobiol 20: 85–87

    CAS  Google Scholar 

  • Akiyama M, Nagashima KVP, Hara M, Wakao N, Tominaga K, Kise H and Kobayashi M (1999) Stoichiometries of LH1/RC determined by the molar ratio of BChl/BPhe analyzed by HPLC in seven species of purple bacteria containing LH1 only. Photomed Photobiol 21: 105–110

    CAS  Google Scholar 

  • Akiyama M, Miyashita H, Watanabe T, Kise H, Miyachi S and Kobayashi M (2001) Detection of chlorophyll ? and pheophytin a in a chlorophyll d-dominating oxygenic photosynthetic prokaryote Acaryochloris marina. Anal Sci 17: 205–208

    Article  PubMed  CAS  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H and Ress DC (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. Proc Natl Acad Sci USA 84: 6162–6166

    Article  PubMed  CAS  Google Scholar 

  • Beer-Romero P, Favinger JL and Gest H (1988) Distinctive properties of bacilliform photosynthetic heliobacteria. FEMS Microbiol Lett 49: 451–454

    Article  CAS  Google Scholar 

  • Berezin BD, Drobysheva AN and Karamanova LP (1976) Kinetics and mechanism of the dissociation of chlorophyll and its metal analogs in proton-donor media. Zh Fiz Khim 50: 1194–1198

    CAS  Google Scholar 

  • Blankenship RE (1984) Primary photochemistry in green photosynthetic bacteria. Photochem Photobiol 40: 801–806

    CAS  Google Scholar 

  • Braumann T, Vasmel H, Grimme LH and Amesz J (1986) Pigment composition of the photosynthetic membrane and reaction center of the green bacterium Prosthecochloris aestuarii. Biochim Biophys Acta 848: 83–91

    Article  CAS  Google Scholar 

  • Büttner M, Xie D-L, Nelson H, Pinther W, Hauska G and Nelson N (1992) Photosynthetic reaction center genes in green sulfur bacteria and in Photosystem 1 are related. Proc Natl Acad Sci USA 89: 8135–8139

    Article  PubMed  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1985) Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution. Nature 318: 618–624

    Article  Google Scholar 

  • Fuller RC, Sprague SG, Gest H and Blankenship RE (1985) A unique photosynthetic reaction center from Heliobacterium chlorum. FEBS Lett 182: 345–349

    Article  CAS  Google Scholar 

  • Gest H and Favinger JL (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a 'new' form of bacteriochlorophyll. Arch Microbiol 136: 11–16

    Article  CAS  Google Scholar 

  • Golbeck JH and Bryant DA (1991) Photosystem I. Curr Top Bioenerg 16: 83–177

    CAS  Google Scholar 

  • Griesbeck C, Hager-Braun C, Rogl H and Hauska G (1998) Quantitation of P840 reaction center preparations from Chlorobium tepidum: chlorophylls and FMO-protein. Biochim Biophys Acta 1365: 285–293

    Article  CAS  Google Scholar 

  • Hauska G, Schoedl T, Remigy H and Tsiotis G (2001) The reaction center of green sulfur bacteria. Biochim Biophys Acta 1507: 260–277

    Article  PubMed  CAS  Google Scholar 

  • Hiyama T, Watanabe T, Kobayashi M and Nakazato M (1987) Interaction of chlorophyll a? with the 65 kDa subunit protein of Photosystem I reaction center. FEBS Lett 214: 97–100

    Article  CAS  Google Scholar 

  • Holt AS (1961) Further evidence of the relation between 2-desvinyl-2-formyl-chlorophyll a and chlorophyll d. Can J Bot 39: 327–331

    Article  CAS  Google Scholar 

  • Holt AS and Morley HV (1959) A proposed structure for chlorophyll d. Can J Chem 37: 507–514

    Article  CAS  Google Scholar 

  • Holzapfel W, Finkele U, Kaiser W, Oesterhelt D, Scheer H, Stilz HU and Zinth W (1989) Observation of a bacteriochlorophyll anion radical during the primary charge separation in a reaction center. Chem Phys Lett 160: 1–7

    Article  CAS  Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M and Itoh S (1998) A Photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95: 13319–13323

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Marquardt J, Iwasaki I, Miyashita H, Kurano N, Mörschel E and Miyachi S (1999) Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic prokaryote Acaryochloris marina. Biochim Biophys Acta 1412: 250–261

    Article  PubMed  CAS  Google Scholar 

  • Hynninen PH and Lötjönen S (1985) Steric interaction between the peripheral substituents of 10(S)-chlorophyll derivatives and conformational consequences: a proton magnetic resonance study. Mag Res Chem 23: 605–615

    Article  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Kirmaier C, Holten D and Parson WW (1985a) Temperature and detection-wavelength dependence of the picosecond electrontransfer kinetics measured in Rhodopseudomonas sphaeroides reaction centers. Resolution of new spectral and kinetic components in the primary charge separation process. Biochim Biophys Acta 810: 33–48

    Article  CAS  Google Scholar 

  • Kirmaier C, Holten D and Parson WW (1985b) Picosecondphotodichroism studies of the transient state in Rhodopseudomonas sphaeroides reaction centers at 5 K. Effects of electron transfer on the six bacteriochlorin pigments. Biochim Biophys Acta 810: 49–61

    Article  CAS  Google Scholar 

  • Kirmaier C, Holten D and Parson WW (1985c) The question of the intermediate state P+BChl? in bacterial photosynthesis. FEBS Lett 185: 76–82

    Article  CAS  Google Scholar 

  • Klimov VV, Shuvalov VA, Krakhmaleva IN, Klevanik AV and Krasnovskii AA (1977a) Photoreduction of bacteriopheophytin b in the primary light reaction of Rhodopseudomonas viridis chromatophores. Biokhimiia 42: 519-530

  • Klimov VV, Klevanik AV, Shuvalov VA and Krasnovsky AA (1977b) Reduction of pheophytin in the primary light reaction of Photosystem II. FEBS Lett 82: 183-186 Klimov VV and Krasnowskii AA (1981) Pheophytin as the primary electron acceptor in Photosystem 2 reaction centres. Photosynthetica 15: 592–609

    Google Scholar 

  • Klimov VV, Shuvalov VA and Heber U (1985) Photoreduction of pheophytin as a result of electron donation from the watersplitting system to Photosystem-II reaction centers. Biochim Biophys Acta 809: 345–350

    Article  CAS  Google Scholar 

  • Kobayashi M (1996) Study of precise pigment composition of Photosystem I-type reaction centers by means of normal-phase HPLC. J Plant Res 109: 223–230

    Article  CAS  Google Scholar 

  • Kobayashi M, Watanabe T, Nakazato M, Ikegami I, Hiyama T, Matsunaga T and Murata N (1988) Chlorophyll a'/P700 and pheophytin a/P680 stoichiometries in higher plants and cyanobacteria determined by HPLC analysis. Biochim Biophys Acta 936: 81–89

    Article  CAS  Google Scholar 

  • Kobayashi M, Maeda H, Watanabe T, Nakane H and Satoh K (1990) Chlorophyll a and ?-carotene content in the D1/D2/cytochrome b-559 reaction center complex from spinach. FEBS Lett 260: 138–140

    Article  CAS  Google Scholar 

  • Kobayashi M, Van de Meent EJ, Amesz J, Ikegami I and Watanabe T (1991a) Bacteriochlorophyll g epimer as a possible reaction center component of heliobacteria. Biochim Biophys Acta 1057: 89–96

    CAS  Google Scholar 

  • Kobayashi M, Watanabe T, Ikegami I, Van de Meent EJ and Amesz J (1991b) Enrichment of bacteriochlorophyll g? in membranes of Heliobacterium chlorum by ether extraction-Unequivocal evidence for its existence in vivo. FEBS Lett 284: 129–131

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Van de Meent EJ, Oh-oka H, Inoue K, Itoh S, Amesz J and Watanabe T (1992) Pigment composition of heliobacteria and green sulfur bacteria. In: Murata N (ed) Research in Photosynthesis, Vol 1, pp 393–396. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Kobayashi M, Akiyama M, Yamamura M, Kise H, Takaichi S, Watanabe T, Shimada K, Iwaki M, Itoh S, Ishida N, Koizumi M, Kano H, Wakao N and Hiraishi A (1998a) Structural determination of the novel Zn-containing bacteriochlorophyll in Acidiphilium rubrum. Photomed Photobiol 20: 75–80

    CAS  Google Scholar 

  • Kobayashi M, Hamano T, Akiyama M, Watanabe T, Inoue K, Oh-oka H, Amesz J, Yamamura M and Kise H (1998b) Lightindependent isomerization of bacteriochlorophyll g to chloro106 phyll a catalyzed by weak acid in vitro. Anal Chim Acta 365: 199–203

    Article  CAS  Google Scholar 

  • Kobayashi M, Yamamura M, Akiyama M, Kise H, Inoue K, Hara M, Wakao N, Yahara K and Watanabe T (1998c) Acid resistance of Zn-Bacteriochlorophyll a from an acidophilic bacterium Acidiphilium rubrum. Anal Sci 14: 1149–1152

    Article  CAS  Google Scholar 

  • Kobayashi M, Akiyama M, Watanabe T and Kano H (1999a) Exotic chlorophylls as key components of photosynthesis. Curr Top Plant Biol 1: 17–35

    CAS  Google Scholar 

  • Kobayashi M, Akiyama M, Yamamura M, Kise H, Wakao N, Ishida N, Koizumi M, Kano H and Watanabe T (1999b) Comparison of physicochemical properties of metallobacteriochlorophylls and metallochlorophylls. Z Phys Chem 213: 207–214

    CAS  Google Scholar 

  • Kobayashi M, Oh-oka H, Akutsu S, Akiyama M, Tominaga K, Kise H, Nishida F, Watanabe T, Amesz J, Koizumi M, Ishida N and Kano H (2000) The primary electron acceptor of green sulfur bacteria, bacteriochlorophyll 663, is chlorophyll a esterified with ? 2,6-phytadienol. Photosynth Res 63: 269–280

    Article  PubMed  CAS  Google Scholar 

  • Laval-Martin DL (1985) Spectrophotometric method of controlled pheophytinization for the determination of both chlorophylls and pheophytins in plant extracts. Anal Biochem 149: 121–129

    Article  PubMed  CAS  Google Scholar 

  • Levanon H and Neta P (1980) One-electron oxidation and demetalation of metalloporphyrins and chlorophyll a in dichloroethane solutions as studied by pulse radiolysis. Chem Phys Lett 70: 100–103

    Article  CAS  Google Scholar 

  • Liebl U, Mockensturm-Wilson M, Trost JT, Brune DC, Blankenship RE and Vermaas W (1993) Single core polypeptide in the reaction center of the photosynthetic bacterium Heliobacillus mobilis: structural implications and relations to other photosystems. Proc Natl Acad Sci USA 90: 7124–7128

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Chiou HC and Blankenship RE (1995) Secondary electron transfer processes in membranes of Heliobacillus mobilis.Biochemistry 34: 12761–12767

    Article  PubMed  CAS  Google Scholar 

  • Mackinney G and Joslyn MA (1940) The conversion of chlorophyll to pheophytin. J Am Chem Soc 62: 231–232

    Article  CAS  Google Scholar 

  • Manning WM and Strain HH (1943) Chlorophyll d, a green pigment of red algae. J Biol Chem 151: 1–19

    CAS  Google Scholar 

  • Mansfield RW and Evans MCW (1985) Optical difference spectrum of the electron acceptor Ao in Photosystem I. FEBS Lett 190: 237–241

    Article  CAS  Google Scholar 

  • Marquardt J, Senger H, Miyashita H, Miyachi S and Mörschel E (1997) Isolation and characterization of biliprotein aggregates from Acaryochloris marina, a Prochloron-like prokaryote containing mainly chlorophyll d. FEBS Lett 410: 428–432

    Article  PubMed  CAS  Google Scholar 

  • Mazaki H and Watanabe T (1988) Pheophytinization of chlorophyll a and chlorophyll a in aqueous acetone. Bull Chem Soc Jpn 61: 2969–2970

    Article  CAS  Google Scholar 

  • Mazaki H, Watanabe T, Takahashi T, Struck A and Scheer H (1992) Pheophytinization of eight chlorophyll derivatives in aqueous acetone. Bull Chem Soc Jpn 65: 3212–3214

    Article  CAS  Google Scholar 

  • Michalski TJ, Hunt JE, Bowman MK, Smith U, Bardeen K, Gest H, Norris JR and Katz JJ (1987) Bacteriopheophytin g: properties and some speculations on a possible primary role for bacteriochlorophylls b and g in the biosynthesis of chlorophylls. Proc Natl Acad Sci USA 84: 2570–2574

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M, Akimoto S, Yamazaki I, Miyashita H and Miyachi S (1999) Fluorescence properties of chlorophyll d-dominating prokaryotic alga, Acaryochloris marina: studies using timeresolved fluorescence spectroscopy on intact cells. Biochim Biophys Acta 1412: 37–46

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M, Hirayama K, Uezono K, Miyashita H and Miyachi S (2000a) Uphill energy transfer in a chlorophyll d-dominating oxygenic photosynthetic prokaryote, Acaryochloris marina. Biochim Biophys Acta 1456: 27–34

    Article  PubMed  CAS  Google Scholar 

  • Mimuro, M, Kobayashi M, Shimada K, Uezono K and Nozawa T (2000b) Magnetic circular dichroism (MCD) properties of reaction center complexes isolated from the Zn-Bacteriochlorophyll a containing purple bacterium, Acidiphilium rubrum. Biochemistry 39, 4020–4027.

    Article  PubMed  CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M and Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402

    Article  CAS  Google Scholar 

  • Miyashita H, Adachi K, Kurano N, Ikemoto H, Chihara M and Miyachi S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38: 274–281

    CAS  Google Scholar 

  • Nakamura A, Tanaka S and Watanabe T (2001) Normal-phase HPLC separation of possible biosynthetic intermediates of pheophytin a and chlorophyll a?. Anal Sci 17: 509–513

    Article  PubMed  CAS  Google Scholar 

  • Nanba O and Satoh H (1987) Isolation of a Photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci USA 84: 109–112

    Article  PubMed  CAS  Google Scholar 

  • Nuijs AM, van Dorssen RJ, Duysens LNM and Amesz J (1985) Excited states and primary photochemical reaction in the photosynthetic bacterium Heliobacterium chlorum. Proc Natl Acad Sci USA 82: 6865–6868

    Article  PubMed  Google Scholar 

  • Permentier HP, Schmidt KA, Kobayashi M, Akiyama M, Hager-Braun C, Neerken S, Miller M and Amesz J (2000) Composition and optical properties of reaction center core complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum. Photosynth Res 64: 27–39

    Article  PubMed  CAS  Google Scholar 

  • Pierson BK and Olson JM (1987) Photosynthetic bacteria. In: Amesz J (ed) Photosynthesis, pp 21–42. Elsevier, Amsterdam

    Google Scholar 

  • Pierson BK and Thornber JP (1983) Isolation and spectral characterization of photochemical reaction centers from the thermophilic green bacterium Chloroflexus aurantiacus strain J-10-f1. Proc Natl Acad Sci USA 80: 80–84

    Article  PubMed  CAS  Google Scholar 

  • Schanderl SH, Chichester CO and Marsh GL (1962) Degradation of chlorophyll and several derivatives in acid solution. J Org Chem 27: 3865–3868

    CAS  Google Scholar 

  • Schelvis JPM, van Noort PI, Aartsma TJ and van Gorkom HJ (1994) Energy transfer, charge separation and pigment in the reaction center of Photosystem II. Biochim Biophys Acta 1184: 242–250

    Article  CAS  Google Scholar 

  • Schiller H, Senger H, Miyashita H, Miyachi S and Dau H (1997) Light-harvesting in Acaryochloris marina-spectroscopic characterization of a chlorophyll d-dominated photosynthetic antenna system. FEBS Lett 410: 433–436

    Article  PubMed  CAS  Google Scholar 

  • Shuvalov VA and Parson WW (1981) Energies and kinetics of radical pair involving bacteriochlorophyll and bacteriopheophytin in bacterial reaction centers. Proc Natl Acad Sci USA 78: 957–961

    Article  PubMed  CAS  Google Scholar 

  • Shuvalov VA, Dolan E and Ke B (1979) Spectral and kinetic evidence for two early acceptors in Photosystem I. Proc Natl Acad Sci USA 76: 770–773

    Article  PubMed  CAS  Google Scholar 

  • Steet JA and Tong CH (1996) Quantification of color change resulting from pheophytinization and nonenzymatic browning reactions in thermally processed green peas. J Agric Food Chem 44: 1531–1537

    Article  CAS  Google Scholar 

  • Strain HH and Manning WM (1942) Isomerization of chlorophylls a and b. J Biol Chem 146: 275–276

    CAS  Google Scholar 

  • Swarthoff T, Gast P, Amesz J and Buisman HP (1982) Photoaccumulation of the reduced primary electron acceptors of Photosystem I of photosynthesis. FEBS Lett 146: 129–132

    Article  CAS  Google Scholar 

  • Svensson B, Vass I and Styrings S (1991) Sequence analysis of the D1 and D2 reaction center proteins of Photosystem II. Z Naturforsch 46c: 765–776

    Google Scholar 

  • Tswett M (1906) Adsorptionsanalyse und Chromatographische Methode. Anwendung auf die Chemie des Chlorophylls. Ber Deutsch Bot Ges 24: 384–393

    CAS  Google Scholar 

  • van de Meent EJ, Kobayashi M, Erkelens C, van Veelen PA, Amesz J and Watanabe T (1991) Identification of 81-hydroxychlorophyll a as a functional reaction center pigment in heliobacteria.Biochim Biophys Acta 1058: 356–362

    CAS  Google Scholar 

  • Wakao N, Yokoi N, Isoyama N, Hiraishi A, Shimada K, Kobayashi M, Kise H, Iwaki M, Itoh S, Takaichi S and Sakurai Y (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Phys 37: 889–893

    CAS  Google Scholar 

  • Watanabe T and Kobayashi M (1990) Quantitation of reaction centers by HPLC analysis of minor but key chlorophyll-type pigments. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol 2, pp 109–112. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Watanabe T, Hongu A, Honda K, Nakazato M, Konno M and Saitoh S (1984) Preparation of chlorophylls and pheophytins by isocratic liquid chromatography. Anal Chem 56: 251–256

    Article  CAS  Google Scholar 

  • Webber AN and Lubitz W (2001) P700: the primary electron donor of Photosystem I. Biochim Biophys Acta1507: 61–79

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M and Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289: 1724–1730

    Article  PubMed  CAS  Google Scholar 

  • Yamamura M, Kobayashi M, Inoue K, Hara M, Wakao N, Kano H, Watanabe T, Akiyama M and Kise H (1998) Acidiphilium rubrum and zinc-bacteriochlorophyll, part 3: high resistance of zinc-bacteriochlorophyll a to acid. In: Garab G (ed) Photosynthesis: Mechanism and Effects, Vol 2, pp 739–742. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauß N, Saenger Wand Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409: 739–743

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masami Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akiyama, M., Miyashita, H., Kise, H. et al. Quest for minor but key chlorophyll molecules in photosynthetic reaction centers – unusual pigment composition in the reaction centers of the chlorophyll d-dominated cyanobacterium Acaryochloris marina . Photosynthesis Research 74, 97–107 (2002). https://doi.org/10.1023/A:1020915506409

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020915506409

Navigation