Skip to main content
Log in

Enhancement of β-glucosidase stability and cellobiose-usage using surface-engineered recombinant Saccharomyces cerevisiae in ethanol production

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

To enhance the use of cellobiose by a recombinant Sachharomyces cerevisiae, the expressed β-glucosidase that hydrolyzes cellobiose was stabilized using a surface-display system. The C-terminal half of α-agglutinin was used as surface-display motif for the expression of β-glucosidase in the cell wall. The surface-displayed β-glucosidase had a half-life time (t 1/2) of 100 h in acidic culture broth conditions, while secreted β-glucosidase had a t 1/2 of 60 h. With such stabilization of β-glucosidase, the surface-engineered S. cerevisiae utilized 7.5 g cellobiose l−1 over 60 h, while S. cerevisiae secreting β-glucosidase into culture broth used 5.8 g cellobiose l−1 over the same period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam AC, Polaina J (1991) Construction of a Saccharomyces cerevisiae strain able to ferment cellobiose. Curr. Genet. 20: 5-8.

    Google Scholar 

  • Benhar I (2001) Biotechnological applications of phage and cell display. Biotechnol. Adv. 19: 1-33.

    Google Scholar 

  • Bothast RJ, Nicholas NN, Dien BS (1999) Fermentations with new recombinant organisms. Biotechnol. Prog. 15: 867-875.

    Google Scholar 

  • Chandrakant P, Bisaria VS (1998) Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit. Rev. Biotechnol. 18: 295-331.

    Google Scholar 

  • Cho KM, Yoo YJ, Kang HS (1999) δ-Integration of endo/exoglucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microb. Technol. 25: 23-30.

    Google Scholar 

  • Duff SJ, Murray MD (1996) Bioconversion of forest products industry waste cellulosics to ethanol: a review. Bioresour. Technol. 55: 1-33.

    Google Scholar 

  • Dunn IS (1996) Phage display of proteins. Curr. Opin. Biotechnol. 7: 547-553.

    Google Scholar 

  • Georgoiu G, Stathopoulos C, Daugherty PS, Nayak AR, Iverson BL, Curtiss RI (1997) Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat. Biotechnol. 15: 29-34.

    Google Scholar 

  • Ingram LO, Aldirch HC, Borges AC, Causey TB, Martinez A, Malales F, Saleh A, Underwood SA, Yomano LP, York SW (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol. Prog. 15: 855-866.

    Google Scholar 

  • Lipke PN, Wojciechowicz D, Kurjan J (1989) Agα1 is the structural gene for the Saccharomyces cerevisiae α-agglutinin, a cell surface glycoprotein involved in cell-cell interactions during mating. Mol. Cell. Biol. 9: 3155-3165.

    Google Scholar 

  • Lu C, Kurjan J, Lipke PN (1994) A pathway for cell wall anchorage of Saccharomyces cerevisiae α-agglutinin. Mol. Cell. Biol. 14: 4825-4833.

    Google Scholar 

  • Lynd LR, Cushman JH, Nicolas RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251: 1318-1320.

    Google Scholar 

  • Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr. Opin. Microbiol. 4: 324-329.

    Google Scholar 

  • Mochizuki D, Miyahara K, Matsuzaki H, Hatano T, Fukui S, Miyakawa T (1994) Overexpression and secretion of cellulolytic enzymes by δ-sequences of Saccharomyces cerevisiae. J. Ferm. Bioeng. 77: 468-473.

    Google Scholar 

  • Murai T, UedaM, Kawaguchi T, Arai M, Tanaka A (1998) Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing β-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl. Environ. Microbiol. 64: 4857-4861.

    Google Scholar 

  • Pack SP, Cho KM, Kang H, Yoo YJ (1998) Development of cellobiose-utilizing yeast for ethanol production from cellulose hydrolyzate. J. Microbiol. Biotechnol. 8: 441-448.

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular Cloning, a Laboratory Manual, 3rd edn. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Schreuder MP, Mooren AT, Toschika HY, Verrips CT, Klis FM (1996) Immobilizing proteins on the surface of yeast cells. Trends Biotechnol. 14: 115-120.

    Google Scholar 

  • Ueda M, Tanaka A (2000) Genetic immobilization of proteins on the yeast cell surface. Biotechnol. Adv.. 18: 121-140.

    Google Scholar 

  • Van Rensburg P, Van Zyl WH, Pretorius IS (1998) Engineering yeast for efficient cellulose degradation. Yeast 14: 67-76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pack, S.P., Park, K. & Yoo, Y.J. Enhancement of β-glucosidase stability and cellobiose-usage using surface-engineered recombinant Saccharomyces cerevisiae in ethanol production. Biotechnology Letters 24, 1919–1925 (2002). https://doi.org/10.1023/A:1020908426815

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020908426815

Navigation