Skip to main content
Log in

Atomic Force Microscopy as a Universal Means of Measuring Physical Quantities in the Mesoscopic Length Range

  • Published:
Measurement Techniques Aims and scope

Abstract

Data are given on recent advances in atomic force microscopy, which is used in precision measurements of various physical quantities and fields at solid surfaces. New designs are considered for micromechanical cantilevers, which are used as physical, chemical, and biological sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Meyer and H. Heinzelmann, “Scanning force microscopy,” in: Scanning Tunneling Microscopy, Vol. 2, R. Wiesendanger and H.-J. Guntherodt (eds.), Springer-Verlag, Berlin and Heidelberg (1992), p. 99.

    Google Scholar 

  2. S. N. Magonov and M.-H. Whangbo, Surface Analysis with STM and AFM, Weinheim (1996).

  3. Ch. Bai, Scanning Tunneling Microscopy and Its Application, Springer, Shanghai (1992), p. 95.

    Google Scholar 

  4. D. Sarid, Exploring Scanning Probe Microscopy with Mathematics, John Wiley and Sons, New York (1997).

  5. I. V. Yaminskii (ed.), Biopolymer Scanning Probe Microscopy [in Russian], Nauchnyi Mir, Moscow (1997).

    Google Scholar 

  6. A. A. Bukharaev, D. V. Ovchinnikov, and A. A. Bukharaeva, Zavodskaya Laboratoriya, No. 5, 10 (1997).

  7. A. P. Volodin, Prib. Tekh. Eksper., No. 6, 3 (1998).

  8. P. A. Arutyunov and A. L. Tolstikhina, Mikroelektron., 26, No. 6, 426 (1997).

    Google Scholar 

  9. P. A. Arutyunov and A. L. Tolstikhina, Mikroelektron, 27, No. 4, 304 (1998).

    Google Scholar 

  10. P. A. Arutyunov and A. L. Tolstikhina, Mikroelektron, 28, No. 6, 405 (1999); 29, No. 1, 13 (2000).

    Google Scholar 

  11. G. Binnig, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett., 56, 930 (1986).

    Google Scholar 

  12. F. J. Giessible, Jap. J. Appl. Phys., 33, Part 1, No. 6B, 3726 (1994).

    Google Scholar 

  13. P. A. Arutyunov, A. L. Tolstikhina, and V. N. Demidov, Zavod. Laborat., 65, No. 9, 31 (1999).

    Google Scholar 

  14. T. A. Land, G. G. De Joreo, and T. L. Martin, Kristallograf., 44, No. 4, 704 (1999).

    Google Scholar 

  15. T. E. Schäffer and P. K. Hansma, J. Appl. Phys., 84, No. 9, 4661 (1998).

    Google Scholar 

  16. G. T. Paloczi et al., Appl. Phys. Lett., 73, No. 12, 1658 (1998).

    Google Scholar 

  17. A. L. Tolstikhina, N. V. Belugina, and S. A. Shikin, Ultramicroscopy, 82, 149 (2000).

    Google Scholar 

  18. A. Majumdar, J. P. Carrejo, and J. Lai, Appl. Phys. Lett., 62, No. 20, 2501 (1993).

    Google Scholar 

  19. J. B. Xu et al., Rev. Sci. Instrum., 65, No. 7, 2262 (1994).

    Google Scholar 

  20. O. Nakabeppu, et al., Appl. Phys. Lett., 66, No. 6, 694 (1995).

    Google Scholar 

  21. K. Luo, Z. Shi, and A. Majumdar, J. Vac. Sci. Technol., 15B, No. 2, 349 (1997).

    Google Scholar 

  22. Y. Zhang, et al., Rev. Sci. Instrum., 69, No. 5, 2081 (1998).

    Google Scholar 

  23. T. D. Stowe et al., Appl. Phys., 71, No. 2, 288 (1997).

    Google Scholar 

  24. G. G. Yaralioglu et al., J. Appl. Phys., 83, No. 12, 7405 (1998).

    Google Scholar 

  25. S. C. Minne, S. R. Manalis, and C. F. Quate, Appl. Phys. Lett., 67, No. 26, 3918 (1995).

    Google Scholar 

  26. M. Lutwiche et al., Sensors and Actuators A, 73, 89 (1999).

    Google Scholar 

  27. Y. Su et al., Sensors and Actuators A, 60, No. 1/3, 163 (1997).

    Google Scholar 

  28. R. P. Ried et al., STM'97: Abstracts Booklet, p. 458.

  29. T. Gotszalk, P. Grabiec, and I. Rangelow, Ultramicroscopy, 82, 39 (2000).

    Google Scholar 

  30. H. Dai et al., Nature, 384, 147 (1996).

    Google Scholar 

  31. S. S. Wong et al., Nature, 394, 52 (1998).

    Google Scholar 

  32. G. V. Dedkov and S. Sh. Rekhviashvili, “Noise processes and degradation in semiconductor devices,” in: Proceedings of an International Seminar [in Russian], Izd. MEI, Moscow (1999), p. 117.

    Google Scholar 

  33. J. K. Gimzewski et al., Chem. Phys. Lett., 217, No. 5/6, 589 (1994).

    Google Scholar 

  34. R. Berger et al., Chem. Phys. Lett., 294, 363 (1998).

    Google Scholar 

  35. P. I. Oden, Sensors and Actuators B, 53, 191 (1998).

    Google Scholar 

  36. T. Thundat et al., Anal. Chem., 67, No. 3, 519 (1995).

    Google Scholar 

  37. G. Y. Chen et al., Appl. Phys., 77, No. 8, 3818 (1995).

    Google Scholar 

  38. R. Berger et al., Science, 276, 2021 (1997).

    Google Scholar 

  39. T. Leinhos et al., Preliminary Proc. STM'99, Seoul, Korea, p. 523.

  40. L. Gurevich et al., STM'99: Abstracts Booklet, p. 454.

  41. T. Thundat et al., Appl. Phys. Lett., 66, No. 13, 1695 (1995).

    Google Scholar 

  42. H. Jensenius et al., Preliminary Proc. STM'99, Seoul, Korea, p. 586.

  43. H. P. Lang et al., Analytyca Chimica Acta, 393, 59 (1999).

    Google Scholar 

  44. M. K. Baller et al., Ultramicroscopy, 82, 1 (2000).

    Google Scholar 

  45. D. R. Baselt, G. U. Lee, and R. J. Colton, J. Vac. Sci. Technol., 14B, No. 2, 789 (1996).

    Google Scholar 

  46. P. Zammaretti, A. Fakler, and U. E. Spichiger-Keller, Preliminary Proc. STM'99, Seoul, Korea, p. 568.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arutyunov, P.A., Tolstikhina, A.L. Atomic Force Microscopy as a Universal Means of Measuring Physical Quantities in the Mesoscopic Length Range. Measurement Techniques 45, 714–721 (2002). https://doi.org/10.1023/A:1020903608209

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020903608209

Navigation