Advertisement

Genetica

, Volume 116, Issue 1, pp 15–23 | Cite as

Sex Determination in Flies, Fruitflies and Butterflies

  • G. Saccone
  • A. Pane
  • L.C. Polito
Article

Abstract

Sex determination mechanisms, differing in their modality, are widely represented in all the various animal taxa, even at the intraspecific level. Within the highly diversified Class Insecta, Drosophila has been used to unravel the mechanistic molecular and genetic interactions that are involved in sex determination. Indeed, the molecularly characterized genes of the Drosophila sex determination hierarchy X:A> Sxl> tra> dsxhave been fruitful starting points in the cloning of homologous genes from other insect species. This cascade seems to control sex determination in all Drosophila species. However, no sex-specific regulatory Sxlhomologues have been isolated from the Mediterranean fruitfly (medfly), Ceratitis capitata, the housefly, Musca domestica, Chrysomya rufifaciesnor from the distantly related phorid fly Megaselia scalaris. Moreover, all these other species use primary signals different from the intricate X:A counting system of Drosophila. However, dsxhomologues isolated from these and other dipteran species as well as from the silkmoth, Bombyx mori, share a conserved sex-specific regulation based on alternative splicing. An understanding of the sex determination mechanisms in insects that are of agricultural or public health importance may help in the development of improved methods for their control using the sterile insect technique.

Drosophila homology sex determination sexing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anleitner, J.E. &; D.S. Haymer, 1992. Y enriched and Y specific DNA sequences from the genome of the Mediterranean fruit fly, Ceratitis capitata. Chromosoma 101: 271–278.Google Scholar
  2. Baker, B.S. &; K.A. Ridge, 1980. Sex and the single cell. I. On the action of major loci affecting sex determination in Drosophila melanogaster. Genetics 94: 383–423.Google Scholar
  3. Barton, N.H. &; B. Charlesworth, 1998. Why sex and recombination? Science 281: 1986–1990.Google Scholar
  4. Bell, L.R., J.L. Horabin, P. Schedl &; T.W. Cline, 1991. Positive autoregulation of Sex–lethalby alternative splicing maintains the female determined state in Drosophila. Cell 65: 229–239.Google Scholar
  5. Berghammer, A.J., M. Klingler &; E.A. Wimmer, 1999. Genetic techniques: a universal marker for transgenic insects. Nature 402: 370–371.Google Scholar
  6. Beverley, S.M. &; A.C. Wilson, 1984. Molecular evolution in Drosophila and higher Diptera. II. A time scale for fly evolution. J. Mol. Evol. 21: 1–13.Google Scholar
  7. Bopp, D., G. Calhoun, J.I. Horabin, M. Samuels &; P. Schedl, 1996. Sex-specific control of Sex-lethalis a conserved mechanism for sex determination in the genus Drosophila. Development 122: 971–982.Google Scholar
  8. Brown, S.J., J.P. Mahaffey, M.D. Lorenzen, R.E. Denel &; J.W. Mahaffey, 1999. Using RNAi to investigate orthologous homeotic gene function during development of distantly related insects. Evol. Dev. 1: 11–15.Google Scholar
  9. Burtis, K.C. &; B.S. Baker, 1989. Drosophila doublesexgene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell 56: 997–1010.Google Scholar
  10. Bush, G., 1966. Female heterogamety in the family Tephritidae. Nature 100: 119–126.Google Scholar
  11. Christophides, G.K., I. Livadaras, C. Savakis &; K. Komitopoulou, 2000. Two medfly promoters that have originated by recent gene duplication drive distinct sex, tissue and temporal expression patterns. Genetics 156: 173–182.Google Scholar
  12. Cline, T.W., 1984. Autoregulation functioning of a Drosophila gene product that establishes and maintains the sexually determined state. Genetics 107: 231–277.Google Scholar
  13. Cline, T.W., 1993. The Drosophila sex determination signal: how do flies count to two? Trends Genet. 9: 385–390.Google Scholar
  14. Cline, T.W. &; B.J. Meyer, 1996. Vive la différence: males v.s. females in flies v.s. worms. Annu. Rev. Genet. 30: 637–702.Google Scholar
  15. Dowell, R.V., I.A. Siddiqui, F. Meyer &; E.L. Spaugy, 2000. Mediterranean fruitfly preventative release programme in southern California, pp. 369–375 in Area-Wide Control of Fruitflies and Other Insect Pests, edited by K.H. Tan. Penerbit Universiti Sains Malaysia, Penang.Google Scholar
  16. Erickson, J.W. &; T.W. Cline, 1998. Key aspects of the primary sex determination mechanism are conserved across the genus Drosophila. Development 125: 3259–3268.Google Scholar
  17. Estes, P.A., L.N. Keyes &; P. Schedl, 1995. Multiple response elements in the Sex-lethalearly promoter ensure its female-specific expression pattern. Mol. Cell. Biol. 15: 904–917.Google Scholar
  18. Fire, A., S. Xu, M.K. Montgomery, S.A. Kostas, S.E. Driver &; C.C. Mello, 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806–811.Google Scholar
  19. Fortier, E. &; J.M. Belote, 2000. Temperature-dependent gene silencing by an expressed inverted repeat in Drosophila. Genesis 26: 240–244.Google Scholar
  20. Franz, G., E. Gencheva &; P. Kerremans, 1994. Improved stability of genetic sex-separation strains for the Mediterranean fruit fly, Ceratitis capitata. Genome 37: 72–82.Google Scholar
  21. Furia, M., D. Artiaco, G. Saccone, P. Vito, I. Peluso, E. Giordano &; L.C. Polito, 1992. Search for sex-specific genes in the medfly Ceratitis capitata: preliminary data on Sxl, pp. 215–224 in Management of Insects Pests: Nuclear and Related Molecular and Genetic Techniques. IAEA, Vienna.Google Scholar
  22. Gourzi, P., D. Gubb, Y. Livadaras, C. Caceres, G. Franz, C. Savakis &; A. Zacharopoulou, 2000. The construction of the first balancer chromosome for the Mediterranean fruit fly, Ceratitis capitata. Mol. Gen. Genet. 264: 127–136.Google Scholar
  23. Hendrichs, J., G. Franz &; P. Rendon, 1995. Increased effectiveness and applicability of the sterile insect technique through male-only releases for control of Mediterranean fruit flies during fruiting seasons. J. App. Entomol. 119: 371–377.Google Scholar
  24. Hilfiker-Kleiner, D., A. Dubendorfer, A. Hilfiker &; R. Nöthiger, 1994. Genetic control of sex determination in the germ line and soma of the housefly, Musca domestica. Development 9: 2531–2538.Google Scholar
  25. Hodgkin, J., 1992. Genetic sex determination mechanisms and evolution. Bioessays 14: 253–261.Google Scholar
  26. Hunter, C.P., 1999. Genetics: a touch of elegance with RNAi. Curr. Biol. 17: R440–R442.Google Scholar
  27. Inoue, K., K. Hoshijima, H. Sakamoto &; Y. Shimura, 1990. Binding of the Drosophila Sex-lethalgene product to the alternative splice site of transformer primary transcript. Nature 344: 461–463.Google Scholar
  28. Inoue, K., K. Hoshijima, I. Higuchi, H. Sakamoto &; Y. Shimura, 1992. Binding of the Drosophila transformer and transformer-2 proteins to the regulatory elements of doublesexprimary transcript for sex-specific RNA processing. Proc. Natl Acad. Sci. USA 89: 8092–8096.Google Scholar
  29. Jursnich, V.A. &; K.C. Burtis, 1993. A positive role in differentiation for the male doublesex protein of Drosophila. Dev. Biol. 155: 235–249.Google Scholar
  30. Kelley, R.L., J. Wang, L. Bell &; M.I. Kuroda, 1997. Sex lethalcontrols dosage compensation in Drosophila by a non-splicing mechanism. Nature 387: 195–199.Google Scholar
  31. Kraemer, C. &; E.R. Schmidt, 1993. The sex determining region of Chironomus thummiis associated with highly repetitive DNA and transposable elements. Chromosoma 102: 553–562.Google Scholar
  32. Kuhn, S., V. Sievert &; W. Traut, 2000. The sex-determining gene doublesexin the fly Megaselia scalaris: conserved structure and sex-specific splicing. Genome 43: 1011–1020.Google Scholar
  33. Lifschitz, E. &; J. Cladera, 1989. Cytogenetics and sex determination in Ceratitis capitata, Chapter 6.1 in Fruit Flies: Their Biology, Natural Enemies and Control, edited by A.S. Robinson &; G. Hooper. Elsevier, New York.Google Scholar
  34. Louis, C., C. Savakis &; F.C. Kafatos, 1987. Possibilities for genetic engineering in insect of economic interest, pp. 47–57 in Fruitflies. Proc. II Intern. Symp., edited by A.P. Economopoulos. Elsevier, Amsterdam.Google Scholar
  35. Loukeris, T.G., I. Livadaras, B. Arcà, S. Zabalou &; C. Savakis, 1995. Gene transfer into the medfly, Ceratitis capitatawith a Drosophila hydeitransposable element. Science 270: 2002–2005.Google Scholar
  36. Lucchesi, J.C. &; T. Skripsky, 1981. The link between dosage compensation and sex differentiation in Drosophila melanogaster. Chromosoma 82: 217–227.Google Scholar
  37. Marin, I. &; B.S. Baker, 1998. The evolutionary dynamics of sex determination. Science 281: 1990–1994.Google Scholar
  38. Meise, M., D. Hilfiker-Kleiner, C. Brunner, A. Dübendorfer, R. Nöthiger &; D. Bopp, 1998. Sex-lethal, the master sexdetermining gene in Drosophila, is not sex-specifically regulated in Musca domestica. Development 25: 1487–1494.Google Scholar
  39. Muller-Holtkamp F., 1995. The Sex-lethalgene homologue in Chrysomya rufifaciesis highly conserved in sequence and exon-intron organization. J. Mol. Evol. 41: 467–477.Google Scholar
  40. Nöthiger, R. &; M. Steinmann-Zwicky, 1985. A single principle for sex determination in insects. Cold Spring Harb. Symp. Quant. Biol. 50: 615–621.Google Scholar
  41. Ohbayashi, F., M.G. Suzuki, K. Mita, K. Okano &; T. Shimada, 2001. A homologue of the Drosophila doublesexgene is transcribed into sex-specific mRNA isoforms in the silkworm, Bombyx mori. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 128: 145–158.Google Scholar
  42. Pannuti, A., T. Kocacitak &; J.C. Lucchesi, 2000. Drosophila as a model for the study of sex determination in Anopheline and Aedine mosquitoes, pp. 263–269 in Area-Wide Control of Fruit Flies and Other Insect Pests, edited by K.H. Tan. Penerbit Universiti Sains Malaysia, Penang.Google Scholar
  43. Parkhurst, S.M., D. Bopp &; D. Ish-Horowicz, 1990. X:A ratio, the primary sex-determining signal in Drosophila, is transduced by HLH proteins. Cell 63: 1179–1191.Google Scholar
  44. Penalva, L.O., H. Sakamoto, A. Navarro-Sabate, E. Sakashita, B. Granadino, C. Segarra &; L. Sanchez, 1996. Regulation of the gene Sex-lethal: a comparative analysis of Drosophila melanogasterand D. subobscura. Genetics 144: 1653–1664.Google Scholar
  45. Robinson, A.S., G. Franz &; K. Fisher, 1999. Genetic sexing strains in the medfly, Ceratitis capitata. Trends Entomol. 2: 81–104.Google Scholar
  46. Saccone, G., 1997. L'omologo del gene doublesexdi Drosophila melanogasterin Ceratitis capitata: evidenze di una parziale conservazione evolutiva nei due ditteri di una gerarchia di regolazione genica del differenziamento sessuale. PhD Thesis, Università degli Studi di Napoli, Federico II.Google Scholar
  47. Saccone, G., I. Peluso, G. Testa, F. Di Paola, A. Pane &; L.C. Polito, 1996. Drosophila Sex-lethaland doublesexhomologous genes in Ceratitis capitata: searching for sex-specific genes to develop a medfly transgenic sexing strain, in Enhancement of the Sterile Insect Technique through Genetic Transformation using Nuclear Techniques. IAEA/FAO, Vienna.Google Scholar
  48. Saccone, G., I. Peluso, D. Artiaco, E. Giordano, D. Bopp &; L.C. Polito, 1998. The Ceratitis capitatahomologue of the Drosophila sex-determining gene Sex-lethalis structurally conserved, but not sex-specifically regulated. Development 125: 1495–1500.Google Scholar
  49. Saccone, G., A. Pane, G. Testa, M. Santoro, G. De Martino, F. Di Paola, C. Louis &; L.C. Polito, 2000. Sex determination in medfly: a molecular approach, pp. 491–496 in Area-Wide Control of Fruit Flies and Other Insect Pests, edited by K.H. Tan. Penerbit Universiti Sains Malaysia, Penang.Google Scholar
  50. Sanchez, L. &; R. Nöthiger, 1982. Clonal analysis of Sxl, a gene needed for female sexual development in D. melanogaster. Wilhelm Roux's Arch. Dev. Biol. 191: 211–214.Google Scholar
  51. Schutt, C. &; R. Nöthiger, 2000. Structure, function and evolution of sex-determining systems in dipteran insects. Development 127: 667–677.Google Scholar
  52. Shearman, D.C. &; M. Frommer, 1998. The Bactrocera tryonihomologue of the Drosophila melanogastersex-determination gene doublesex. Insect Mol. Biol. 7: 355–366.Google Scholar
  53. Sievert, V., S. Kuhn &; W. Traut, 1997. Expression of the sex determining cascade genes Sex-lethaland doublesexin the phorid fly Megaselia scalaris. Genome 40: 211–214.Google Scholar
  54. Sosnowski, B.A., J.M. Belote &; M. Mckeown, 1989. Sex-specific alternative splicing of RNA from the transformergene results from sequence-dependent splice site blockage. Cell 58: 449–459.Google Scholar
  55. Suzuki, M.G., F. Ohbayashi, K. Mita &; T. Shimada, 2001. The mechanism of sex-specific at the doublesexgene is different between Drosophila melanogasterand Bombyx mori. Insect Biochem. Mol. Biol. (in press).Google Scholar
  56. Thomas, D.D., C.A. Donnelly, R.J. Wood &; L.S. Alphey, 2000. Insect population control using a dominant, repressible, lethal genetic system. Science 287: 2474–2476.Google Scholar
  57. Tian, M. &; T. Maniatis, 1992. Positive control of pre-mRNA splicing in vitro. Science 256: 237–240.Google Scholar
  58. Tian, M. &; T. Maniatis, 1993. A splicing enhancer complex controls alternative splicing of doublesexpre-mRNA. Cell 16: 105–114.Google Scholar
  59. Ullerich, F.H., 1975. Identification of the genetic sex chromosomes in the monogenic blowfly Chrysomya rufifacies(Calliphoridae, Diptera). Chromosoma 50: 393–419.Google Scholar
  60. Ullerich, F.H., 1977. Production of male and female offspring in the strictly monogenic fly Chrysomya rufifaciesafter ovary transplantation. Naturwissenschaften 64: 277–278.Google Scholar
  61. Wilkins, A.S., 1995. Moving up the hierarchy: a hypothesis on the evolution of a genetic sex determination pathway. BioEssays 17: 71–77.Google Scholar
  62. Willhoeft, U. &; G. Franz, 1996. Identification of the sexdetermining region of the Ceratitis capitataY chromosome by deletion mapping. Genetics 144: 737–745.Google Scholar
  63. Willhoeft, U. &; W. Traut, 1990. Molecular differentiation of the homomorphic sex chromosomes in Megaselia scalaris(Diptera) detected by random DNA probes. Chromosoma 99: 237–242.Google Scholar
  64. Wilson, E.O., 1993. The Diversity of Life. Harvard University Press.Google Scholar
  65. Zwiebel, L.J., G. Saccone, A. Zacharopoulou, N.J. Besansky, G. Favia, F.H. Collins, C. Louis &; F.C. Kafatos, 1995. The whitegene of Ceratitis capitata: a phenotypic marker for germline transformation. Science 270: 2005–2008.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • G. Saccone
    • 1
  • A. Pane
    • 1
  • L.C. Polito
    • 1
  1. 1.Dipartimento di Genetica, Biologia Generale e MolecolareUniversità degli Studi di Napoli ‘Federico II’NapoliItaly (Phone

Personalised recommendations