Skip to main content
Log in

Thermal Conductivity of 28Si from 80 to 300 K

  • Published:
Inorganic Materials Aims and scope

Abstract

The thermal conductivity of isotopically enriched 28Si (99.896%) was measured from 80 to 300 K. The data are shown to be well fitted by the Holland model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Geballe, T.H. and Hull, G.W., Isotopic and Other Types of Thermal Resistance in Germanium, Phys. Rev., 1958, vol. 110, pp. 773–775.

    Google Scholar 

  2. Olson, J.R., Pohl, R.O., Vandersande, J.V., et al., Thermal Conductivity of Diamond Between 170 and 1200 K and the Isotope Effect, Phys. Rev. B: Condens. Matter, 1993, vol. 47, no. 22, pp. 14850–14856.

    Google Scholar 

  3. Ozhogin, V.I., Inyushkin, A.V., Taldenkov, A.N., et al., Effect of Isotopic Composition on the Thermal Conductivity of Germanium Single Crystals, Pis'ma Zh. Eksp. Teor. Fiz., 1996, vol. 63, no. 6, pp. 463–467.

    Google Scholar 

  4. Asen-Palmer, M., Bartkowski, K., Gmelin, E., et al., Thermal Conductivity of Germanium Crystals with Different Isotopic Compositions, Phys. Rev. B: Condens. Matter, 1997, vol. 56, no. 15, pp. 9431–9447.

    Google Scholar 

  5. Capinski, W.S., Maris, H.J., Bauser, E., et al., Thermal Conductivity of Isotopically Enriched Si, Appl. Phys. Lett., 1997, vol. 71, no. 15, pp. 2109–2111.

    Google Scholar 

  6. Ruf, T., Henn, R.W., Asen-Palmer, M., et al., Thermal Conductivity of Isotopically Enriched Silicon, Solid State Commun., 2000, vol. 115, pp. 243–247.

    Google Scholar 

  7. Zhernov, A.P. and Inyushkin, A.V., Kinetic Coefficients in Isotopically Disordered Crystals, Usp. Fiz. Nauk, 2002, vol. 172, no. 5, pp. 573–599.

    Google Scholar 

  8. Devyatykh, G.G., Bulanov, A.D., Gusev, A.V., et al., Preparation of High-Purity Isotopically Enriched 28Si, Dokl. Akad. Nauk, 2001, vol. 376, no. 4, pp. 492–493.

    Google Scholar 

  9. Anders, E.E., Sukharevskii, B.Ya., and Volchok, I.V., Precision Measurements of the Low-Temperature Thermal and Electrical Conductivity in Niobium–Zirconium Solid Solutions, in Fizicheskie konstanty i svoistva veshchestv (Physical Constants and Properties of Substances), issue 9: Teplofizicheskie svoistva veshchestv i materialov (Thermophysical Properties of Substances and Materials), Kharkov: GSSSD, 1975, pp. 72–88.

    Google Scholar 

  10. Ho, C.Y., Powell, R.W., and Leley, P.E., Thermal Conductivity of the Elements, J. Phys. Chem. Ref. Data, 1972, vol. 3, no. 1, pp. 279–421.

    Google Scholar 

  11. Glassbrenner, C.J. and Slack, G.A., Thermal Conductivity of Silicon and Germanium from 3 K to the Melting Point, Phys. Rev., 1964, vol. 134, pp. 1058–1069. ai]12._Callaway, J., Model for Lattice Thermal Conductivity at Low Temperatures, Phys. Rev., 1959, vol. 113, no. 4, pp. 1046–1051. ai]13._Holland, M.G., Analysis of Lattice Thermal Conductivity, Phys. Rev., 1963, vol. 132, no. 6, p. 2461.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gusev, A.V., Gibin, A.M., Morozkin, O.N. et al. Thermal Conductivity of 28Si from 80 to 300 K. Inorganic Materials 38, 1100–1102 (2002). https://doi.org/10.1023/A:1020902213235

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020902213235

Keywords

Navigation