Skip to main content
Log in

Effects of Sequestered Iridoid Glycosides on Prey Choice of the Prairie Wolf Spider, Lycosa carolinensis

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Specialist insect herbivores that sequester allelochemicals from their host plants may be unpalatable to potential predators. However, the host-plant species used may determine the degree of palatability. Spiders, including members of the family Lycosidae, are important predators of invertebrate prey. We fed buckeye caterpillars, Junonia coenia (Nymphalidae), reared on Plantago lanceolata (containing high levels of iridoid glycosides) or P. major (containing low levels of iridoid glycosides) to prairie wolf spiders, Lycosa carolinensis (Lycosidae), to determine whether the spiders found insects that sequester iridoid glycosides unpalatable. In a field experiment, spiders ate caterpillars reared on P. major significantly more often than caterpillars reared on P. lanceolata, although they attacked equal numbers of both types of prey. Spiders that bit caterpillars behind their heads or along the middle of their backs prevented caterpillars from implementing deterrent defensive strategies such as regurgitating or defecating. In a laboratory experiment, we presented spiders with P. lanceolata-reared and P. major-reared caterpillars simultaneously for eight consecutive trials. Spiders consumed P. major-reared buckeyes significantly more often than P. lanceolata-reared caterpillars. We found no evidence that the spiders learned to avoid the unpalatable prey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Anderson, J. F. 1974. Responses to starvation in the spiders Lycosa lenta Hertz and Filistata hibernalis (Hertz). Ecology 55:576-585.

    Google Scholar 

  • Bardwell, C. J., and Averill, A. L. 1996. Effectiveness of larval defenses against spider predation in cranberry ecosystems. Environ. Entomol. 25:1083-1091.

    Google Scholar 

  • Belofsky, G., Bowers, M. D., Janzen, S., and Stermitz, F. R. 1989. Iridoid glycosides of Aureolaria flava (Scrophulariaceae) and their sequestration by Euphydryas phaeton (Nymphalidae) butterflies. Phytochemistry 28:1601-1604.

    Google Scholar 

  • Bernays, E. A. 1988. Host specificity in phytophagous insects: Selection pressure from generalist predators. Entomol. Exp. Appl. 49:1153-1160.

    Google Scholar 

  • Bernays, E. A., and Cornelius, M. L. 1989. Generalist caterpillar prey are more palatable than specialists for the generalist predator, Iridomyrmex humilis. Oecologia 79:427-430.

    Google Scholar 

  • Bobbitt, J. M., and Segebarth, D. P. 1969. Iridoid glycosides and similar substances, pp. 1-145, in W. I. Taylor and A. R. Battersby (eds.). Cyclopentanoid Terpene Derivatives. Academic Press, New York.

    Google Scholar 

  • Bowers, M. D. 1980. Unpalatability as a defense strategy of Euphydryas phaeton (Lepidoptera: Nymphalidae). Evolution 34:586-600.

    Google Scholar 

  • Bowers, M. D. 1981. Unpalatability as a defense of western checkerspot butterflies (Euphydryas, Nymphalidae). Evolution 35:367-375.

    Google Scholar 

  • Bowers, M. D. 1984. Iridoid glycosides and hostplant specificity in larvae of the buckeye butterfly, Junonia coenia (Nymphalidae). J. Chem. Ecol. 10:1567-1577.

    Google Scholar 

  • Bowers, M. D. 1988. Chemistry and coevolution: iridoid glycosides, plants and herbivorous insects, pp. 133-165, in K. Spencer (ed.). Chemical Mediation of Coevolution. Academic Press, New York.

    Google Scholar 

  • Bowers, M. D., and Collinge, S. K. 1992. Fate of ingested glycosides in different life stages of the buckeye, Junonia coenia (Lepidoptera: Nymphalidae). J. Chem. Ecol. 18:317-331.

    Google Scholar 

  • Bowers, M. D., and Farley, S. 1990. The behaviour of gray jays, Perisoreus canadensis, towards palatable and unpalatable Lepidoptera. Anim. Behav. 39:699-705.

    Google Scholar 

  • Bowers, M. D., and Stamp, N. E. 1992. Chemical variation within and between individuals of Plantago lanceolata (Plantaginaceae). J. Chem. Ecol. 18:985-995.

    Google Scholar 

  • Bowers, M. D., and Stamp, N. E. 1993. Effects of plant age, genotype, and herbivory on Plantago performance and chemistry. Ecology 74:1778-1791.

    Google Scholar 

  • Bowers, M. D., Boockvar, K., and Collinge, S. K. 1993. Iridoid glycosides of Chelone glabra and their sequestration by larvae of a sawfly. J. Chem. Ecol. 19:815-823.

    Google Scholar 

  • Brower, L. P. 1984. Chemical defense in butterflies, pp. 109-134, in R. I. Vane-Wright and P. R. Ackery (eds.). The Biology of Butterflies: Symposium of the Royal Entomology Society number 11. Academic Press, London.

    Google Scholar 

  • Camara, M. D. 1997. Predator responses to sequestered plant toxins in buckeyc caterpillars: Are tritrophic interactions locally variable. J. Chem. Ecol. 23:2093-2106.

    Google Scholar 

  • Collinge, S. K. 1995. Spatial arrangement of patches and corridors in the landscape: Consequences for biological diversity and implications for landscape architecture. PhD dissertation. Harvard University, Cambridge, Massachusetts.

    Google Scholar 

  • De la Fuente, M. A., Dyer, L. A., and Bowers, M. D. 1994/1995. The iridoid glycoside, catalpol, as a deterrent to the predator Camponotus floridanus (Formicidae). Chemoecology 5/6: 13-18.

    Google Scholar 

  • Duff, R., Bacon, J., Mundie, C., Farmer, V., Russell, J., and Forrester, A. 1965. Catalpol and methylcatalpol: Naturally occurring glycosides in Plantago and Buddleia species. Biochem. J. 96:1-5.

    Google Scholar 

  • Dyer, L. A. 1995. Tasty generalists and nasty specialists? Antipredator mechanisms in tropical lepidopteran larvae. Ecology 76:1483-1496.

    Google Scholar 

  • Dyer, L. A., and Bowers, M. D. 1996. The importance of sequestered iridoid glycosides as a defense against an ant predator. J. Chem. Ecol. 22:1527-1539.

    Google Scholar 

  • Dyer, L. A., and Floyd, T. 1993. Determinants of predation on phytophagous insects: The importance of diet breadth. Oecologia 96:575-582.

    Google Scholar 

  • Edgar, W. D. 1969. Prey and predators of the wolf spider, Lycosa lugubris. J. Zool. London 159:405-411.

    Google Scholar 

  • Farley, C., and Shear, W. A. 1973. Observations on the courtship behaviour of Lycosa carolinensis. Bull. Br. Arach. Soc. 2:153-158.

    Google Scholar 

  • Foelix, R. F. 1996. Biology of Spiders, 2nd ed. Oxford University Press, New York.

    Google Scholar 

  • Freed, A. N. 1984. Foraging behaviour in the jumping spider Phidippus audax: Bases for selectivity. J. Zool. London 203:49-61.

    Google Scholar 

  • Gross, P. 1993. Insect behavioral and morphological defenses against parasitoids. Annu. Rev. Entomol. 38:251-273.

    Google Scholar 

  • Guillebeau, L. P., and All, J. N. 1989. Geocoris spp. (Hemiptera: Lygaeidae) and the striped lynx spider (Araneae: Oxyopidae): Cross predation and prey preferences. J. Econ. Entomol. 82:1106-1110.

    Google Scholar 

  • Gwynn, D. T. 1979. Nesting biology of the spider wasps (Hymenoptera: Pompilidae) which prey on burrowing wolf spiders (Araneae: Lycosidae, Geolycosa). J. Nat. Hist. 13:681-692.

    Google Scholar 

  • Hallander, H. 1970. Prey, cannibalism, and microhabitat selection in the wolf spiders Pardosa chelata O. F. Miller and P. pullata Clerck. Oikos 21:337-340.

    Google Scholar 

  • Holmberg, R. G., and Turnbull, A. L. 1982. Selective predation in an euryphagous invertebrate predator Pardosa vancouveri (Arachnida: Araneae). Can. Entomol. 114:243-257.

    Google Scholar 

  • Jensen, S. R. 1991. Plant iridoids, their biosynthesis and distribution in angiosperms. Proc. Phytochem. Soc. Eur. 31:133-158.

    Google Scholar 

  • Kuenzler, E. J. 1958. Niche relations of three species of Lycosid spiders. Ecology 39:494-500.

    Google Scholar 

  • Krischik, V., and Denno, R. 1983. Individual, population, and geographic patterns in plant defense, pp. 463-512, in R. F. Denno and M. S. McClure (eds.). Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York.

    Google Scholar 

  • Malcolm, S. B. 1991. Cardenolide mediated interactions between plants and herbivores, pp. 251-295, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites Volume 1: The Chemical Participants. Academic Press, San Diego, California.

    Google Scholar 

  • Moeur, J. E., and Eriksen, C. H. 1972. Metabolic responses to temperature of a desert spider, Lycosa (Pardosa) carolinensis (Lycosidae). Physiol. Zool. 45:290-301.

    Google Scholar 

  • Montllor, C. B., Bernays, E. A., and Cornelius, M. L. 1991. Responses of two hymenopteran predators to surface chemistry of their prey: Significance for an alkaloid-sequestering caterpillar. J. Chem. Ecol. 17:391-399.

    Google Scholar 

  • Nentwig, W. 1983. The prey of web-building spiders compared with feeding experiments (Araneae: Araneidae, Linyphiidae, Pholcidae, Agelenidae), Oecologia 56:132-139.

    Google Scholar 

  • Nentwig, W. 1986a. A comparison of prey lengths among spiders. Oecologia 68:595-600.

    Google Scholar 

  • Nentwig, W. 1986b. Non-webbing spiders: Prey specialists or generalists? Oecologia 69:571-576.

    Google Scholar 

  • Nishida, R., and Fukami, H. 1989. Host plant iridoid-based chemical defense of an aphid, Acyrthosiphon nipponicus, against ladybird beetles. J. Chem. Ecol. 15:1837-1846.

    Google Scholar 

  • Peterson, S., Johnson, N. D., and LeGuyader, J. L. 1987. Defensive regurgitation of allelochemicals derived from host cyanogensis by eastern tent caterpillars. Ecology 68:1268-1272.

    Google Scholar 

  • Punzo, F. 1991. Field and laboratory observations on prey items taken by the wolf spider, Lycosa lenta Hentz (Araneae, Lycosidae). Bull. Br. Arach. Soc. 8:261-264.

    Google Scholar 

  • Punzo, F., and Jellies, J. 1983. Comparative water relations of araneid and lycosid spiderlings (Arachnida). Comp. Biochem. Physiol. 74A:981-985.

    Google Scholar 

  • Riechert, S. E. 1981. The consequence of being territorial: a spider case study. Am. Nat. 117:871-892.

    Google Scholar 

  • Riechert, S. E. 1993. Spiders as representative sit-and-wait predators, pp. 313-328, in M. Crawley (ed.). Natural Enemies: The Population Biology of Predators, Parasites and Diseases. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Riechert, S. E., and Lockley, T. 1984. Spiders as biological control agents. Annu. Rev. Entomol. 29:299-330.

    Google Scholar 

  • Rimpler, H. 1991. Sequestration of iridoids by insects. Proc. Phytochem. Soc. Eur. 31:314-330.

    Google Scholar 

  • Ritland, D. B. 1991a. Revising a classic butterfly mimicry scenario. Evolution 45:918-934.

    Google Scholar 

  • Ritland, D. B. 1991b. Unpalatability of viceroy butterflies (Limenitis archippus) and their purported mimicry models, Florida queens (Danaus gilippus). Oecologia 88:102-108.

    Google Scholar 

  • Rovner, J. S. 1980. Morphological and ethological adaptations for prey capture in Wolf spiders (Arancae, Lycosidae). J. Arachnol. 8:201-215.

    Google Scholar 

  • Rowell-Rahier, M., and Pasteels, J. M. 1991. Third trophic level influences of plant allelochemicals, pp. 243-277, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites Volume 1: The Chemical Participants. Academic Press, San Diego, California.

    Google Scholar 

  • Scott, J. A. 1986. The Butterflies of North America. Stanford University Press, Stanford, California.

    Google Scholar 

  • Shook, R. S. 1978. Ecology of the Wolf spider, Lycosa carolinensis Walckenaer (Araneae, Lycosidae) in a desert community. J. Arachnol. 6:53-64.

    Google Scholar 

  • Stamp, N. E. 1992. Relative susceptibility to predation of two species of caterpillars on plantain. Oecologia 92:124-129.

    Google Scholar 

  • Strohmeyer, H. H., Stamp, N. E., Jarzomski, C. M., and Bowers, M. D. 1998. Effects of prey species and prey diet on two invertebrate predators, stinkbugs and jumping spiders. Ecol. Entomol. 23:68-79.

    Google Scholar 

  • Uetz, G. W., Bischoff, J., and Raver, J. 1992. Survivorship of Wolf spiders (Lycosidae) reared on different diets. J. Arachnol. 20:207-211.

    Google Scholar 

  • Vasconcellos-Neto, J., and Lewisohn, T. M. 1984. Discrimination and release of unpalatable butterflies by Nephila clavipes, a neotropical orb-weaving spider. Ecol. Entomol. 9:337-344.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theodoratus, D.H., Bowers, M.D. Effects of Sequestered Iridoid Glycosides on Prey Choice of the Prairie Wolf Spider, Lycosa carolinensis . J Chem Ecol 25, 283–295 (1999). https://doi.org/10.1023/A:1020894729188

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020894729188

Navigation