Skip to main content
Log in

Cucurbitacins: A Role in Cucumber Beetle Steroid Nutrition?

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The conditional role of cucurbitacins as phytosteroid supplements, cholesterol precursors, or ecdysteroid antagonists in the spotted cucumber beetle, Diabrotica undecimpunctata howardi, was investigated in two ways: by comparing larval survival and growth rate on cucurbitacin-rich and cucurbitacin-poor squash cultivars of Cucurbita pepo and by manipulating the presence of cholesterol, phytosteroids, and cucurbitacins in an artificial diet and examining the effects on adult survival and fecundity. Larvae that developed on cucurbitacin-rich roots grew significantly faster and survived as well as larvae on cucurbitacin-poor roots. There was no evidence, however, that adults could substitute cucurbitacins in vital phytosteroid roles. Beetles reared on a cucurbitacin-rich, phytosteroid-poor diet laid significantly fewer eggs and died significantly younger than beetles with a full complement of dietary phytosteroids and also laid fewer eggs than beetles with no access to phytosteroids in their adult diet. The data are consistent with the hypothesis that, when the side chain of dietary cucurbitacins can be successfully hydrogenated, these compounds play a nutritional role as substitutes or precursors for structural steroids. In contrast, when the carbon–carbon double bond cannot be hydrogenated, cucurbitacins may become antagonists at ecdysteroid receptors, negatively affecting beetle fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Andersen, J. F., Plattner, R. D., and Weisleder, D. 1988. Metabolic transformations of cucurbitacins by Diabrotica virgifera virgifera Leconte and D. undecimpunctata howardi Barber. Insect Biochem. 18:71-77.

    Google Scholar 

  • Bernays, E. 1994. Plant sterols and host-plant affiliations of herbivores, pp. 45-57, in E. A. Bernays (ed.). Insect-Plant Interactions, Vol. IV. CRC Press, Boca-Raton, Florida.

    Google Scholar 

  • BopprÉ, M. 1984. Redefining “pharmacophagy”. J. Chem. Ecol. 10:1151-1154.

    Google Scholar 

  • Bownes, M., and Redfern, C. P. F. 1985. Insect metamorphosis and its hormonal control, pp. 157-173, in M. Balls and M. Bownes (eds.). Metamorphosis. Clarendon Press, Oxford.

    Google Scholar 

  • Briers, T., and Huybrechts, R. 1984. Control of vitellogenin synthesis by ecdysteroids in Sarcophaga bullata. Insect Biochem. 14:121-126.

    Google Scholar 

  • Clark, A. J., and Bloch, K. 1959. Conversion of ergosterol to 22-dehydrocholesterol in Blattela germanica. J. Biol. Chem. 234:2589-2593.

    Google Scholar 

  • Clayton, R. B. 1964. The utilization of sterols by insects. J. Lipid Res. 5:3-19.

    Google Scholar 

  • DeHeer, C. J., and Tallamy, D. W. 1991. Cucumber beetle larval affinity to cucurbitacins. Environ. Entomol. 20:775-788.

    Google Scholar 

  • Dinan, L., Whiting, P., Girualt, J., Lafont, R., Dhadialla, T. S., Cress, D. E., Mugat, B., Antoniewski, C., and Lepesant, J. 1997a. Cucurbitacins are insect steroid hormone antagonists acting at the ecdysteroid receptor. Biochem. J. 327:643-650.

    Google Scholar 

  • Dinan, L., Whiting, P., Sarker, S. D., Kasai, R., and Yamasaki, K. 1997b. Cucurbitanetype compounds from Hemsleya carnosiflora antagonize ecdysteroid action in the Drosophila melanogaster BII cell line. Cell. Mol. Life Sci. 53:271-274.

    Google Scholar 

  • Downer, R. G. H. 1978. Functional role of lipids in insects, pp. 57-81, in M. Rockstein (ed.). Biochemistry of Insects. Academic Press, New York.

    Google Scholar 

  • Dumser, J. B. 1980. The regulation of spermatogenesis in insects. Annu. Rev. Entomol. 25:341-369.

    Google Scholar 

  • Ferguson, J. E., Metcalf, R. L., and Fischer, D. C. 1985. Disposition and fate of cucurbitacin B in five species of diabroticites. J. Chem. Ecol. 11:1307-1321.

    Google Scholar 

  • Fristrom, J. W., Raikow, R., Petri, W., and Stewart, D. 1970. In vitro, evagination and RNA synthesis in imaginal discs of Drosophila melanogaster, pp. 381-401, in E. W. Hanly (ed.). Problems in Biology: RNA in Development. University of Utah Press, Salt Lake City, Utah.

    Google Scholar 

  • Fristrom, J. W., Natzle, J., Doctor, J., and Fristrom, D. 1985. The regulation of a developmental sequence during imaginal disc metamorphosis pp. 162-180, in M. Ball and M. Bownes (eds.). Metamorphosis. Clarendon Press, Oxford, U.K.

    Google Scholar 

  • Guss, P. L., and Kryson, J. L. 1973. Maintenance of the southern corn rootworm on a dry diet. J. Econ. Entomol. 66:352-353.

    Google Scholar 

  • Hagedorn, H. H. 1985. The role of ecdysteroids in reproduction, pp. 205-262, in G. A. Kerkut and L. I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 8. Pergamon Press, Oxford, U.K.

    Google Scholar 

  • Hagedorn, H. H. 1989. Physiological roles at hemolymph ecdysteroids in the adult insect, pp. 279-289, in J. Koolman (ed.). Ecdysone. Theime Medical Publishers, New York.

    Google Scholar 

  • Halaweish, F. T., and Tallamy, D. W. 1993. Quantitative determination of cucurbitacins by high performance liquid chromatography and high performance thin layer chromatography. J. Liq. Chromatogr. 16:497-511.

    Google Scholar 

  • Hirsh, I. S., and Barbercheck, M. E. 1996. Effects of host plant and cucurbitacin on growth of larval Diabrotica undecimpunctata howardi. Entomol. Exp. Appl. 81:47-51.

    Google Scholar 

  • Ikekawa, N. 1983. Sterol metabolism in insects and biosynthesis of ecdysone in the silkworm. Experientia 39:466-472.

    Google Scholar 

  • Ikekawa, N. 1985. Structures, biosynthesis and function of sterols in invertebrates, pp. 199-230, in H. Danielson and J. Sjovall (eds.). Sterols and Bile Acids. Elsevier, Amsterdam.

    Google Scholar 

  • Karlson, P., and Hoffmeister, H. 1963. Zur biogenese des Ecdysons, I. umwandlung von Cholesterin in Ecdyson. Z. Physiol. Chem. 331:298-300.

    Google Scholar 

  • Lanot, R., Dorn, A., GÜnster, B., Thiebold, J., Laqueux, M., and Hoffman, J. A. 1989. Functions of ecdysteroids in oocyte maturation and embryonic development of insects, pp. 262-270, in J. Koolman (ed.). Ecdysone. Thieme Medical Publishers, New York.

    Google Scholar 

  • Lavie, D., and Glotter, E. 1971. The cucurbitacins, a group of tetracyclic triterpenes. Fortsch. Chem. Org. Naturst. 29:307-356.

    Google Scholar 

  • Lomberk, H. A. 1999. Curcurbitacin phagostimulation of diabroticite larvae. MS thesis. University of Delaware, Newark, Delaware.

    Google Scholar 

  • Mandaron, P. 1970. Developpement in vitro de disques imaginaux de la drosophile. Aspects morphologiques et histologiques. Dev. Biol. 22:298-320.

    Google Scholar 

  • Metcalf, R. L., Metcalf, R. A., and Rhodes, A. M. 1980. Cucurbitacins as kairomones for diabroticite beetles. Proc. Natl. Acad. Sci. U.S.A. 17:3769-3772.

    Google Scholar 

  • Miro, M. 1995. Cucurbitacins and their pharmacological effects. Phytother. Res. 9:159-168.

    Google Scholar 

  • Nishida, R., and Fukami, H. 1990. Sequestration of distasteful compounds by some pharmacophagous insects. J. Chem. Ecol. 16:151-164.

    Google Scholar 

  • Nishida, R., Yokoyama, M., and Fukami, H. 1992. Sequestration of cucurbitacin analogs by New and Old World chrysomelid leaf beetles in the tribe Luperini. Chemoecology 3:19-24.

    Google Scholar 

  • Raabe, M. 1986. Insect reproduction: Regulation of successive steps. Adv. Insect Physiol. 29-154.

  • Rees, H. H. 1989. Pathways of biosynthesis of ecdysone, pp. 152-160, in J. Koolman (ed.). Ecdysone. Thieme Medical Publishers, New York.

    Google Scholar 

  • Richards, G. 1981. Insect hormones in development. Biol. Rev. 56:501-549.

    Google Scholar 

  • SAS Institute. 1989. SAS/STAT User's Guide, Version 6, 4th ed., Vol. 2. SAS Institute, Cary, North Carolina.

    Google Scholar 

  • Schwartz, M. B., Kelly, T. J., Imberski, R. B., and Rubenstein, E. C. 1985. The effects of nutrition and methoprene treatment on ovarian ecdysteroid synthesis in Drosophila melanogaster. J. Insect Physiol. 31:947-957.

    Google Scholar 

  • Sehnal, F. 1989. Hormonal role of ecdysteroids in insect larvae during metamorphosis, pp. 271-278, in J. Koolman (ed.). Ecdysone. Thieme Medical Publishers, New York.

    Google Scholar 

  • Svoboda, J. A., and Thompson, M. J. 1985. Steroids, pp. 137-175, in G. A. Kerkut and L. I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 10, Pergamon Press, Oxford.

    Google Scholar 

  • Tallamy, D. W., and Halaweish, F. T. 1993. The effects of age, prior exposure, sex, and reproductive activity on sensitivity to cucurbitacins in southern corn rootworm (Coleoptera: Chrysomelidae). Environ. Entomol. 29:926-932.

    Google Scholar 

  • Tallamy, D. W., and Gorski, P. M. 1997. Long-and short-term effect of cucurbitacin consumption on Acalymma vittatum (Coleoptera: Chrysomelidae) fitness. Environ. Entomol. 26:672-677.

    Google Scholar 

  • Tallamy, D. W., Gorski, P. M., and Burzon, J. K. 1999. The fate of male-derived cucurbitacins in spotted cucumber beetle females. J. Chem. Ecol. In press.

  • Tallamy, D. W., Whittington, D. P., Defurio, F., Fontaine, D. A., Gorski, P. M., and Gothro, P. 1998. The effect of sequestered cucurbitacins on the pathogenicity of Metarhizium anisopliae (Moniliales: Moniliaceae) on spotted cucumber beetle eggs and larvae (Coleoptera: Chrysomelidae). Environ. Entomol. 27:366-372.

    Google Scholar 

  • Truman, J. W. 1988. Hormonal approaches for studying nervous system development in insects. Adv. Insect Physiol. 21:1-34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halaweish, F.T., Tallamy, D.W. & Santana, E. Cucurbitacins: A Role in Cucumber Beetle Steroid Nutrition?. J Chem Ecol 25, 2373–2383 (1999). https://doi.org/10.1023/A:1020886210590

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020886210590

Navigation