Skip to main content
Log in

Molecular Modelling of N2O/NO Separation in Acid Mordenite: Comparison with Gas-Chromatographic Experiments

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Molecular modelling, utilising the Grand Canonical Monte Carlo method, was employed to study the interactions between nitrous oxide (N2O) and nitric oxide (NO) with a solid matrix, namely mordenite, before and after charge equilibration. The results indicate that the charge equilibration leads to an adsorption which is independent of the pressure. Comparison with gas-chromatographic experiments indicate that charge equilibration is not allowed in acid mordenite. Therefore, in the case of polar molecules, their adsorption depends on the charge in the zeolite micropores.

Furthermore, molecular modelling can be utilised to also predict gas-solid-chromatographic separations, provided that calculations take into account the presence of the carrier gas to obtain an approach of calculated separation factors similar to those found experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Galan, Chem. Eng. J. 28, 105 (1984).

    Google Scholar 

  2. E. Guglielminotti, F. Boccuzzi, M. Manzoli, F. Pinna, and M. Scarpa, J. Catal. 192, 149 (2000).

    Google Scholar 

  3. F. Pinna, M. Scarpa, G. Strukul, E. Guglielminotti, F. Boccuzzi, and M. Manzoli, J. Catal. 192, 158 (2000).

    Google Scholar 

  4. I.V. Mitchell (Ed.), in Pillared Layered Structures. Current Trends and Applications (Elsevier Applied Science, Amsterdam, 1990).

    Google Scholar 

  5. G. Ertl, H. Knozinger, and J. Weitkamp (Eds.), in Handbook of Heterogeneous Catalysis (Wiley, New York, 1998) vol. 4, ch. 1, for overview of current de-NOx technology for both standing and moving sources.

    Google Scholar 

  6. A.A.G. Tomlinson, J. Porous Materials 5, 259 (1998).

    Google Scholar 

  7. K. Shimizu, F. Okada, Y. Nakamura, A. Satsuma, and T. Hattori, J. Catal. 195, 151 (2000).

    Google Scholar 

  8. J. Leglise, J.O. Petunchi, and W.K. Hall, J. Catal. 86, 392 (1984).

    Google Scholar 

  9. K. de Boer, A.P.J. Jamsen, and R.A. van Santen, Chem. Phys. Letters 223, 46 (1994).

    Google Scholar 

  10. A.J. Richards, K. Watanabe, N. Austin, and M.R. Stapleton, J. Porous Materials 2, 43 (1995).

    Google Scholar 

  11. R. Aubeau, L. Champeix, and J. Reiss, J. Chromatog. 6, 209 (1961).

    Google Scholar 

  12. J.E. Purcell, Nature 201, 1321 (1964).

    Google Scholar 

  13. J. King and S.W. Benson, Anal. Chem. 38, 261 (1966).

    Google Scholar 

  14. S.A. Greene, Anal. Chem. 31, 480 (1959).

    Google Scholar 

  15. O.L. Hollis, Anal. Chem. 38, 309 (1966).

    Google Scholar 

  16. D.H. Smith and E. Clark, Proc. Soil Science Soc. Am. 11, 111 (1960).

    Google Scholar 

  17. J.N. Murray and J.B. Doe, Anal. Chem. 37, 941 (1965).

    Google Scholar 

  18. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, J. Chem Phys. 21, 1087 (1953).

    Google Scholar 

  19. A.K. Rappé and W.A. Goddard III, J. Phys. Chem. 95, 3358 (1991).

    Google Scholar 

  20. A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard III, and W.M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992).

    Google Scholar 

  21. P.P. Ewald, Ann. der Physik 64, 253 (1921).

    Google Scholar 

  22. E.G. Derouane, G. Crehan, C.J. Dillon, D. Bethell, H. He, and S.B. Derouane-Abd Hamid, J. Catal. 194, 410 (2000).

    Google Scholar 

  23. R.A. van Santen and G.J. Kramer, Chem. Rev. 95, 637 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Stefanis, A., Romani, G., Semprini, E. et al. Molecular Modelling of N2O/NO Separation in Acid Mordenite: Comparison with Gas-Chromatographic Experiments. Journal of Porous Materials 9, 97–104 (2002). https://doi.org/10.1023/A:1020878324464

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020878324464

Navigation