Skip to main content
Log in

Experimental Methods in Testing of Tissues and Implants*

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Three experimental tasks are of primary interest in biomechanics: determination of the mechanical properties of biomaterials, including tissues and artificial materials; validation of the mechanical reliability of implantable devices; assessment of the compatibility of the mechanical properties of such devices with the surrounding biological environment. Due to the complexity of the in vivo conditions, most of these studies are performed on in vitro models. This contribution presents a review of some methods that are currently utilised at the Laboratory of Biological Structure Mechanics at the Politecnico of Milan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, T.D., ‘Techniques for mechanical stimulation of cells in vitro: a review’, J. Biomech. 33 (2000) 3-14.

    Google Scholar 

  2. Butler, D.L., Kay, M.D. and Stouffer, D.C., ‘Comparison of material properties of fascicle-bone units from patellar tendon and knee ligament’, J. Biomech. 19 (1986) 425-432.

    Google Scholar 

  3. Chimich, D., Shrive, N., Frank, C., Marchuk, L. and Bray, R., ‘Water content alters viscoelastic behavior of the normal adolescent rabbit medial collateral ligament’, J. Biomech. 25 (1992) 831-837.

    Google Scholar 

  4. Colombo, M., Raimondi, M.T., Villa, T., Quaglini, V. and Pietrabissa, R., ‘The biomechanics of intramedullary nailing: a protocol for laboratory testing’, J. Mech. Med. Biol. 2 (2002) 81-97.

    Google Scholar 

  5. Colombo, M., Quaglini, V., Raimondi, M.T., Levi, M., Falcone, L., Marazzi, M., Marinoni, E., Remuzzi, A. and Pietrabissa, R., ‘Effects of in vitro culture techniques on the mechanical properties of tissue-engineered cartilage: a rheological study’, in: Middleton, J., Jones, M.L. and Pande, G.N. (eds), Computer Methods in Biomechanics and Biomedical Engineering, Vol. 4, Gordon and Breach, Amsterdam, 2002 (in press).

    Google Scholar 

  6. Contro, R., Quaglini, V., Pietrabissa, R., Rizzo, S. and Rodriguez y Baena, R., ‘The bone-prosthesis interface: an overview and preliminary tests’, in: Rossmanith, H.P. (ed.), Damage and Failure of Interfaces, Balkema, Rotterdam, 1997, pp. 439-442.

    Google Scholar 

  7. Cristofolini, L., ‘A critical analysis of stress shielding evaluation in hip prostheses’, Crit. Rev. Biomed. Eng. 25 (1997) 409-483.

    Google Scholar 

  8. Fung, Y.C., Biomechanics. Mechanical Properties of Living Tissues, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  9. Haut, R.C. and Powlison, R.C., ‘The effects of test environment and cyclic stretching on the failure properties of human patellar tendons’, J. Orthop. Res. 8 (1990) 532-540.

    Google Scholar 

  10. Pietrabissa, R., Mantero, S., Quaglini, V., Contro, R. and Runza, M., ‘Mechanical properties of lumbar dura mater and biomechanics of spinal anesthesia procedure’, in: Middleton, J., Jones, M.L. and Pande, G.N. (eds), Computer Methods in Biomechanics and Biomedical Engineering, Vol. 2, Gordon and Breach, Amsterdam, 1998, pp. 355-362.

    Google Scholar 

  11. Pietrabissa, R., Gionso, L., Quaglini, V., Di Martino, E. and Simion, M., ‘An in vitro study on compensation of mismatch of screw versus cement-retained implant supported fixed prostheses’, Clin. Oral Implants Res. 11 (2000) 448-457.

    Google Scholar 

  12. Prendergast, P.J., Biomechanical Techniques for Pre-clinical Testing of Prostheses and Implants, Institute of Fundamental Technological Research, Warsaw, 2001.

    Google Scholar 

  13. Quaglini, V., Contro, R. and Vena, P., ‘A single-integral finite strain characterization of soft connective tissues and parameter identification’, in: Tanaka, M. and Dulikravich, G.S. (eds), Inverse Problems in Engineering Mechanics, Vol. 2, Elsevier, Oxford, 2000, pp. 171-180.

    Google Scholar 

  14. Quaglini, V., Characterization of Mechanical Properties and Identification of Constitutive Parameters for Soft tissues, PhD Thesis, Technical University of Milan, 2000.

  15. Quaglini, V., Villa, T., Migliavacca, F., Carmo, M., Settembrini, P., Contro, R. and Pietrabissa, R., ‘An in vitro methodology for evaluating the mechanical properties of aortic vascular prostheses’, Artificial Organs 26 (2002) 555-564.

    Google Scholar 

  16. Riepe, G., Loos, J., Imig, H., Schroder, A., Schneider, E., Petermann, J., Rogge, A., Ludwig, M., Schenke, A., Nassut, R., Chafke, N. and Morlock, M., ‘Long-term in vivo alterations of polyester vascular grafts in humans’, Eur. J. Endovasc. Surg. 13 (1997) 540-548.

    Google Scholar 

  17. Runza, M., Pietrabissa, R., Mantero, S., Albani, A., Quaglini, V. and Contro, R., ‘Lumbar dura mater biomechanics: experimental characterization and scanning electron microscopy observations’, Anesth. Analg. 88 (1999) 1317-1321.

    Google Scholar 

  18. Sacks, M.S. and Chuong, C.J., ‘Orthotropic mechanical properties of chemically treated bovine pericardium’, Ann. Biomed. Engng. 26 (1998) 892-902.

    Google Scholar 

  19. Soncini, M., Quaglini, V. and Pietrabissa, R., ‘Messa a punto di un metodo sperimentale per la valutazione della stabilità all'interfaccia tra osso e impianto in implantologia dentale - Experimental method for the evaluation of bone-fixture interface stability in dental implantology’, Italian J. Oral Implantol. 1 (1999) 13-20.

    Google Scholar 

  20. Vena, P., Villa, T. and Contro, R., ‘Anisotropic damage model for evaluation of load carrying capacity of artificial ligaments’, in: Proceedings of the 2001 ASME Bioengineering Conference, 2001, pp. 909-910.

  21. Woo, S.L.-Y., Orlando, C., Camp, J. and Akeson, W., ‘Effects of post-mortem storage by freezing on ligament tensile behavior’, J. Biomech. 19 (1986) 399-404.

    Google Scholar 

  22. Zioupos, P. and Barbenel, J.C., ‘Mechanics of native bovine pericardium. II. A structure based model for the anisotropic mechanical behaviour of the tissue’, Biomaterials 15 (1994) 374-382.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietrabissa, R., Quaglini, V. & Villa, T. Experimental Methods in Testing of Tissues and Implants* . Meccanica 37, 477–488 (2002). https://doi.org/10.1023/A:1020860309927

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020860309927

Navigation