Skip to main content
Log in

MARS Low-Power Liquid-Salt Micropellet-Fuel Reactor

  • Published:
Atomic Energy Aims and scope

Abstract

The basic technical characteristics of a conceptual design of micropellet fuel autonomous liquid-salt reactor MARS for low power levels are presented. Two variants with core service lives 15 and 60 yr are presented. It is shown that this concept satisfies the requirements which autonomous low-power nuclear power systems must meet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. N. Alekseev, N. N. Ponomarev-Stepnoi, S. A. Subbotin, et al., Enhanced Safety Nuclear Reactors (Analysis of Conceptual Designs), Énergoatomizdat, Moscow (1993).

    Google Scholar 

  2. M. Rosental, P. Haubenreich, and R. Briggs, “The development status of molten-salt breeder reactors,” ORNL-4812 (1972), USA.

  3. P. Kasten, et al., “Graphite behavior and its effect on MSBR,” Nucl. Eng. Design, 9, No. 2, 157 (1969).

    Google Scholar 

  4. H. Machpherson, “Molten-salt reactors,” in: Proceedings of the International Conference on the Constructive Uses of Atomic Energy, Washington (1968), American Nuclear Society (1969).

  5. P. Haubenreich and J. Engel, “Experience with the molten-salt reactor experiment,” Nucl Appl. Techn., 8, No. 2, 107–110 (1970).

    Google Scholar 

  6. T. Hudson, “Design and operation of the 1200°F heating system for the MSRE,” Trans. Amer. Nucl. Soc., 8, 147–153 (1965).

    Google Scholar 

  7. S. S. Abalin, V. A. Blinkin, V. M. Novikov, et al., “High-temperature liquid-salt reactors in nuclear- hydrogen power production,” Vopr. At. Nauk. Tekh., Ser. At.-Vodorod. Énerget. Tekhnol., No. 1, 10–15 (1978).

  8. K. Furukawa and A. Lecoco, “New safe nuclear energy for the next century. Thorium molten-salt nuclear energy sunergetic,” in: Proceedings of Florence World Energy Research Symposium, Firenze, Italy, May 28- June 1, 1990.

  9. M. Hery, M. Israel, P. Faugeras, and A. Lecoco, Etat d'ancement des recherches en France dans le domaine des CES. Conf 3980, Bruxelles, May 23- 24, 1977.

  10. V. M. Novikov, V. V. Ignat'ev, V. I. Fedulov, and V. N. Cherednikov, Liquid-Salt Nuclear Power Systems. Prospects and Problems, Énergoatomizdat, Moscow (1990).

    Google Scholar 

  11. Lu. Yingzhjong, “Ordeals of Chernobyl and rejustification of inherently safe reactors,” in: Proceedings of Energy Workshop in IIASA, June 12- 16, 1987, Austria, Luxembourg.

  12. Nuclear Power Production. Liquid-Salt Nuclear Power Systems. Prospects and Problems. Expert Assessments, Énergoatomizdat, Moscow (1989), p. 137.

  13. Nuclear Power Production. Problems and Prospects. Expert Assessments, Énergoatomizdat, Moscow (1989), p. 122.

  14. A. V. Andreev, I. G. Belousov, I. A. Belov, and V. S. Seryi, “Concept for the safest possible high-temperature reactor with liquid-salt coolant and bulk core,” Preprint IAÉ-5555/3 (1992).

  15. A. V. Andreev, I. G. Belousov, and I. A. Belov, “Radiation safety assessment of high-temperature liquid-salt reactor with bulk core (VTRS-100),” Preprint IAÉ-5557/3 (1992).

  16. W. Grimes, “Molten-salt reactor chemistry,” Nucl. Appl. Tech., 8, No. 2, 137–139 (1970).

    Google Scholar 

  17. M. Rosental, et al., “Molten-salt reactors history. Status and potential,” ibid., 8, No. 2, 123 (1970).

    Google Scholar 

  18. J. Koder, “Salt corrosion studies of molten-salt reactor program,” ORNL 4832 (1996), USA.

  19. V. M. Novikov, V. N. Prusakov, V. V. Ignta'ev, et al., “Investigation of the corrosion resistance of structural materials for liquid-salt reactors,” Vopr. At. Nauk. Tekh., Ser. At.-Vodorod. Énerget. Tekhnol., No. 3(10), 31–33 (1981).

  20. Yu. G. Degal'tsev, N. N. Ponomarev-Stepnoi, and V. F. Kuznetsov, Behavior of High-Temperature Nuclear Fuel under Irradiation, Énergoatomizdat, Moscow (1987).

    Google Scholar 

  21. D. Scott and E. Eatherly, “Graphite and xenon behavior and their influence of molten-salt reactor design,” Nucl. Appl. Tech., 8, No. 2, 78 (1970).

    Google Scholar 

  22. V. A. Karpov, Fuel Cycles and Physical Features of High-Temperature Reactors, Énergoatomizdat, Moscow (1985).

    Google Scholar 

  23. E. S. Glushkov, V. E. Demin, N. N. Ponomarev-Stepnoi, and A. A. Khrulev, Heat Release in a Nuclear Reactor, Énergoatomizdat, Moscow (1985).

    Google Scholar 

  24. V. I. Evseev, V. A. Karpov, A. M. Sobolev, et al., “Substantiation of the choice of physical characteristics of a VG-400 reactor,” Vopr. At. Nauk. Tekh., Ser. At-Vodorod. Énerget. Tekhnol., No. 1(11), 3–6 (1982).

  25. V. A. Karpov and Yu. N. Udyapskii, “Analysis of the neutron spectra and nuclear properties of fissioning and rawmaterial isotopes used in high-temperature gas-cooled reactors,” Preprint IAÉ-3360/4 (1980).

  26. S. N. Uvarov, Gas-Turbine Aircraft Motors in Power Production, Énergiya, Leningrad (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseev, P.N., Belov, I.A., Ponomarev-Stepnoi, N.N. et al. MARS Low-Power Liquid-Salt Micropellet-Fuel Reactor. Atomic Energy 93, 537–546 (2002). https://doi.org/10.1023/A:1020853930499

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020853930499

Keywords

Navigation