Skip to main content
Log in

Frugivory and Taste Responses to Fructose and Tannic Acid in a Prosimian Primate and a Didelphid Marsupial

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The taste responses to sweet and astringent compounds were investigated in two mammals of similar ecology, by using the classical method of the two-bottle test. The taste threshold for fructose was higher in Microcebus murinus, a prosimian primate, than in Caluromys philander, a didelphid marsupial. The profiles of suprathreshold responses resembled a dissymmetric bell-shaped curve, but the rate of consumption of sweet solutions up to maximal intake increased more rapidly in Microcebus than in Caluromys. Despite showing a photoperiod-synchronized physiology, Microcebus displayed no seasonal variation of the taste threshold and suprathreshold responses. The depressing effect of tanning acid on the ingestion of fructose solutions increased progressively with tannin concentration and was lower as fructose concentration increased. Inhibition thresholds for tannic acid were similar between the two species. The data suggest that adaptation to frugivorous diets is associated with globally similar shaping of the taste responses, even though subtle differences of palatability may account for differences of feeding selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Atramentowicz, M. 1988. La frugivorie opportuniste de trois Marsupiaux Didelphidés de Guyane. Rev. Ecol. (Terre Vie) 43:47-57.

    Google Scholar 

  • Barton, R. A. 1992. Allometry of food intake in free-ranging anthropoid primates. Folia Primatol. 58:56-59.

    Google Scholar 

  • Barton, R. A., Whiten, A., Byrne, R. W., and English, M. 1993. Chemical composition of baboon plant foods: Implications for the interpretation of intra-and interspecific differences in diet. Folia Primatol. 61:1-20.

    Google Scholar 

  • Charles-Dominique, P. 1983. Ecology and social adaptations in didelphid marsupials: Comparison with eutherians of similar ecology, pp. 395-422, in J. F. Eisenberg and D. G. Kleiman (eds.). Advances in the Study of Mammalian Behavior. Special Publication of the American Society of Mammalogists, Washington, D.C.

    Google Scholar 

  • Critchley, H., and Rolls, E. 1996. Responses of primate taste cortex neurons to the astringent tastant tannic acid. Chem. Senses 21:135-145.

    Google Scholar 

  • Feeny, P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51:565-581.

    Google Scholar 

  • Furstenburg, D., and van Hoven, W. 1994. Condensed tannin as anti-defoliate agent against browsing by giraffe (Giraffa camelopardalis) in the Kruger National Park. Comp. Biochem. Physiol. 170A:425-431.

    Google Scholar 

  • Ganzhorn, J. U. 1988. Food partitioning among Malagasy primates. Oecologia 75:436-450.

    Google Scholar 

  • Glaser, D. 1979. Gustatory preference behaviour in primates, pp. 51-61, in J. H. A. Kroeze (ed.). Preference Behaviour and Chemoreception. Information Retrieval Ltd., London.

    Google Scholar 

  • Glaser, D. 1986. Geschmacksforschung bei Primaten. Vierteljahrschr. Naturforsch. Ges. Zurich 131(2):92-110.

    Google Scholar 

  • Glaser, D., and Hellekant, G. 1977. Verhaltens-und electrophysiologische Experimente über den Geschmackssinn bei Saguinus midas tamarin (Callitrichidae). Folia Primatol. 28:43-51.

    Google Scholar 

  • Goldstein, J. L., and Swain, T. 1963. Changes in tannins in ripening fruits. Phytochemistry 2:371-383.

    Google Scholar 

  • Hellekant, G., Hladik, C. M., Dennys, V., Simmen, B., Roberts, T. W., Glaser, D., DuBois, G., and Walters, D. E. 1993a. On the sense of taste in two Malagasy primates (Microcebus murinus and Eulemur mongoz). Chem. Senses 18:307-320.

    Google Scholar 

  • Hellekant, G., Hladik, C. M., Dennys, V., Simmen, B., Roberts, T. W., and Glaser, D. 1993b. On the relationship between sweet taste and seasonal body weight changes in a primate (Microcebus murinus). Chem. Senses 18:27-33.

    Google Scholar 

  • Kawamura, Y., Funakoshi, M., Kasahara, Y., and Yamamoto, T. 1969. A neurophysiological study on astringent taste. Jpn. J. Physiol. 19:851-865.

    Google Scholar 

  • Kosar, E., and Schwartz, G. 1990. Cortical unit responses to chemical stimulation of the oral cavity in the rat. Brain Res. 513:212-224.

    Google Scholar 

  • Lebreton, P. 1982. Tannins ou alcaloïdes: deux tactiques phytochimiques de dissuasion des herbivores. Rev. Ecol. (Terre Vie) 36:539-572.

    Google Scholar 

  • Le Magnen, J. 1987. Central processing of sensory information in the control of feeding, pp. 95-128, in D. Otosson (ed.). Progress in Sensory Physiology. Springer-Verlag, Berlin.

    Google Scholar 

  • Lindroth, R. L., and Batzli, G. O. 1984. Plant phenolics as chemical defenses: effects of natural phenolics on survival and growth of prairie voles (Microtus ochrogaster). J. Chem. Ecol. 10:229-244.

    Google Scholar 

  • Lucas, F., and Bellisle, F. 1987. The measurement of food preferences in humans: do taste-and-spit tests predict consumption? Physiol. Behav. 39:739-743.

    Google Scholar 

  • Lyman, B., and Green, B. 1990. Oral astringency: Effects of repeated exposure and interactions with sweeteners. Chem. Senses 15:151-164.

    Google Scholar 

  • Marks, D. L., Swain, T., Goldstein, S., Richard, A., and Leighton, M. 1988. Chemical correlates of rhesus monkey food choice: The influence of hydrolyzable tannins. J. Chem. Ecol. 14:213-235.

    Google Scholar 

  • Michels, R. R., King, J. E., and Hsiao, S. 1988. Preference differences for sucrose solutions in young and aged squirrel monkeys. Physiol. Behav. 42:53-57.

    Google Scholar 

  • Moskowitz, H. R., Kluter, R. A., Westerling, J., and Jacobs, H. L. 1974. Sugar sweetness and pleasantness: Evidence for different psychological laws. Science 184:583-585.

    Google Scholar 

  • Ogawa, H., Yamashita, S., Noma, A., and Sato, M. 1972. Taste responses in the macaque monkey chorda tympani. Physiol. Behav. 9:325-331.

    Google Scholar 

  • Perret, M. 1979. Seasonal and social determinants of urinary catecholamines in the lesser mouse lemur (Microcebus murinus, Cheirogaleinae, Primates). Comp. Biochem. Physiol. 62:51-60.

    Google Scholar 

  • Perret, M. 1980. Influence de la Captivité et du Groupement Social sur la Physiologie du Microcèbe (Microcebus murinus. Cheirogalinae, Primates). Thèse Doctorat Etat, University Paris XI, Paris.

    Google Scholar 

  • Perret, M., and Schilling, A. 1987. Intermale sexual effect elicited by volatile urinary ether extract in Microcebus murinus (Prosimian, Primates). J. Chem. Ecol. 13:495-507.

    Google Scholar 

  • Peter-Rousseaux, A. 1974. Photoperiod, sexual activity and body weight variations of Microcebus murinus (Miller 1777), pp. 365-373, in R. D. Martin and A. C. Walker (eds.). Prosimian Biology. Duckworth, London.

    Google Scholar 

  • Pfaffmann, C. 1960. The pleasures of sensation. Psychol. Rev. 67:253-268.

    Google Scholar 

  • Ramirez, I. 1990. Why do sugars taste good? Neurosc. Biobehav. Rev. 14:125-134.

    Google Scholar 

  • Richter, C. P., and Campbell, K. H. 1939. Sucrose taste thresholds of rats and humans. Am. J. Physiol. 128:291-297.

    Google Scholar 

  • Robbins, C. T., Hanley, T. A., Hagerman, A. E., Hjeljord, O., Baker, D. L., Schwartz, C. C., and Mautz, W. W. 1987. Role of tannins in defending plants against ruminants: reduction in protein availability. Ecology 68:98-107.

    Google Scholar 

  • Rolls, E. T., Sienkewicz, Z. J., and Yaxley, S. 1989. Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur. J. Neurosci. 1:53-60.

    Google Scholar 

  • Schiffman, S. S., Suggs, M., Sostman, A., and Simon, S. 1992. Chorda tympani and lingual nerve responses to astringent compounds in rodents. Physiol. Behav. 51:55-63.

    Google Scholar 

  • Simmen, B. 1994. Taste discrimination and diet differentiation among New World primates, pp. 150-165, in D. J. Chivers and P. Langer (eds.). The Digestive System in Mammals: Food, Form and Function. Cambridge University Press, Cambridge.

    Google Scholar 

  • Simmen, B., and Hladik, C. M. 1988. Seasonal variation of taste threshold for sucrose in a prosimian species. Microcebus murinus. Folia Primatol. 51:152-157.

    Google Scholar 

  • Simmen, B., and Hladik, C. M. 1998. Sweet and bitter taste discrimination in primates: scaling effects across species. Folia Primatol. 69:129-138.

    Google Scholar 

  • Swain, T. 1979. Tanins and lignins, pp. 657-682, in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores, their Interaction with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Vanderweele, D. A., Novin, D., Rezek, M., and Sanderson, J. D. 1974. Duodenal or hepaticportal glucose perfusion: Evidence for duodenally-based satiety. Physiol. Behav. 12:467-473.

    Google Scholar 

  • Wrangham, R. W., and Waterman, P. G. 1983. Condensed tannins in fruits eaten by chimpanzees. Biotropica 15:217-222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simmen, B., Josseaume, B. & Atramentowicz, M. Frugivory and Taste Responses to Fructose and Tannic Acid in a Prosimian Primate and a Didelphid Marsupial. J Chem Ecol 25, 331–346 (1999). https://doi.org/10.1023/A:1020850914167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020850914167

Navigation