Skip to main content
Log in

Auroral Radio Emissions, 1. Hisses, Roars, and Bursts

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Earth's auroral electrons produce copious non-thermal radio emissions of various types, including auroral kilometric radiation (AKR), whistler mode auroral hiss, mode conversion radiation such as auroral roar and MF-burst, and possibly HF/VHF emissions. In some cases, mechanisms have been identified and quantitatively described, whereby the energy of the auroral electrons is converted into electromagnetic radiation. In many other cases, the radiation mechanism, or the relative significance of several possible mechanisms, remains uncertain. This review covers fairly comprehensively experimental and theoretical research on types of auroral radiation other than AKR, concentrating on emissions with frequency higher than about 1 kHz and treating only emissions which are unique to the auroral zone. The review covers both ground-based and in-situ observations. It covers a wide range of theoretical approaches, emphasizing those which at present appear most important for producing non-AKR auroral radiations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksenov, V. I. and et. al.: 1976, ‘Sporadic solar radio radiation and ionospheric parameter studies aboard the satellite Interkosmos-Copernicus-500, 1. Scientific equipment and experimental methods’. Cosmic Res. 14, 353.

    Google Scholar 

  • André, M.: 1997, ‘Waves and wave-particle interactions in the auroral region’. J. Atmos. Solar Terr. Phys. 59, 1687.

    Google Scholar 

  • André, M. and L. Eliasson: 1992, ‘Electron acceleration by low frequency electric field fluctuations: electron conics’. Geophys. Res. Lett. 19, 1073.

    Google Scholar 

  • Antani, S. N., N. N. Rao, and D. J. Kaup: 1991, ‘Direct conversion of ordinary mode into upper hybrid wave by density irregularities in the ionosphere’. Geophys. Res. Lett. 18, 2285.

    Google Scholar 

  • Armstrong, T.: 1965, ‘Morphology of the outer zone electrons at low latitudes from January through July and September 1963’. J. Geophys. Res. 70, 2077.

    Google Scholar 

  • Arnoldy, R. L., K. A. Lynch, P. M. Kintner, J. Vago, S. Chesney, T. E. Moore, and C. J. Pollock: 1992, ‘Bursts of transverse ion acceleration at rocket altitudes’. Geophys. Res. Lett. 19, 413.

    Google Scholar 

  • Bahnsen, A., M. Jespersen, E. Ungstrup, and I. B. Iversen: 1987, ‘Auroral hiss and kilometric radiation measured from the Viking satellite’. Geophys. Res. Lett. 14, 471.

    Google Scholar 

  • Bale, S. D.: 1999, ‘Observation of the topside ionospheric MF/HF radio emission from space’. Geophys. Res. Lett. 26, 667.

    Google Scholar 

  • Bamber, J. M., J. D. Maggs, and W. Gekelman: 1995, ‘Whistler wave interaction with a density stiration: A laboratory investigation of an auroral process’. J. Geophys. Res. 100, 23795.

    Google Scholar 

  • Barbosa, D. D.: 1976, ‘Electrostatic mode coupling at fuh: A generation mechanism for auroral kilometric radiation’. Ph.D. thesis, University of California, Los Angeles.

    Google Scholar 

  • Barrington, R. E., T. R. Hartz, and R. W. Harvey: 1971, ‘Diurnal distribution of ELF, VLF, and LF noise at high latitudes as observed by Alouette 2’. J. Geophys. Res. 76, 5278.

    Google Scholar 

  • Basu, B., T. Chang, and J. R. Jasperse: 1982, ‘Electrostatic plasma instabilities in the daytime lower ionosphere’. Geophys. Res. Lett. 9, 68.

    Google Scholar 

  • Beghin, C.,J. L. Rauch, and J. M. Bosqued: 1989, ‘Electrostatic plasma waves and HF auroral hiss generated at low altitude’. J. Geophys. Res. 94, 1359.

    Google Scholar 

  • Bell, T. F.: 1968, ‘Artificial production of VLF hiss’. J. Geophys. Res. 73, 4409.

    Google Scholar 

  • Bell, T. F., U. S. Inan, V. S. Sonwalkar, and R. A. Helliwell: 1991, ‘DE-1 observations of lower hybrid waves exited by VLF whistler mode waves’. Geophys. Res. Lett. 18, 393.

    Google Scholar 

  • Bell, T. F. and H. D. Ngo: 1988, ‘Electrostatic waves stimulated by coherent VLF signals propagating in and near the inner radiation belts’. J. Geophys. Res. 93, 2599.

    Google Scholar 

  • Bell, T. F. and H. D. Ngo: 1990, ‘Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic field aligned plasma density irregularities’. J. Geophys. Res. 95, 149.

    Google Scholar 

  • Benson, R. F.: 1975, ‘Source mechanisms for auroral kilometric radiation’. Geophys. Res. Lett. 2, 52.

    Google Scholar 

  • Benson, R. F.: 1985, ‘Auroral kilometric radiation: Wave modes, harmonics, and source region electron density structures’. J. Geophys. Res. 90, 2753.

    Google Scholar 

  • Benson, R. F.: 1993, ‘Elusive upper hybrid waves in the auroral topside ionosphere’. In: R. L. Lysak (ed.): Auroral Plasma Dynamics. Washington, D.C.: American Geophys.Union, p. 267.

    Google Scholar 

  • Benson, R. F. and M. D. Desch: 1991, ‘Wideband noise observed at ground level in the auroral region’. Radio Sci. 26, 943.

    Google Scholar 

  • Benson, R. F., M. D. Desch, R. D. Hunsucker, and G. J. Romick: 1988, ‘Ground-level detection of low-and medium-frequency auroral radio emissions’. J. Geophys. Res. 93, 277.

    Google Scholar 

  • Benson, R. F. and V. A. Osherovich: 1992, ‘High-order stimulated ionospheric diffuse plasma resonances: Significance for magnetospheric emissions’. J. Geophys. Res. 97, 19413.

    Google Scholar 

  • Benson, R. F., V. A. Osherovich, J. Fainberg, A. F. Viñas, and D. R. Ruppert: 2001, ‘An interpretation of banded magnetospheric radio emissions’. J. Geophys. Res. 106, 13179.

    Google Scholar 

  • Benson, R. F. and H. K. Wong: 1987, ‘Low-altitude ISIS 1 observations of auroral radio emissions and their significance to the cyclotron maser instability’. J. Geophys. Res. 92, 1218.

    Google Scholar 

  • Bering, E. A., J. E. Maggs, and H. R. Anderson: 1987, ‘The plasma wave environment of and auroral arc’. J. Geophys. Res. 92, 7581.

    Google Scholar 

  • Berkey, F. T. and R. Parthasarathy: 1964, ‘The rare instances of periodic emission of synchrotron radiation form the auroral electrons’. J. Atmos. Terr. Phys. 26, 936.

    Google Scholar 

  • Bernhardt, P. A. and C. G. Park: 1977, ‘Protonospheric-ionospheric modelling of VLF ducts’. J. Geophys. Res. 82, 5222.

    Google Scholar 

  • Bernstein, I. B., J. M. Greene, and M. D. Kruskal: 1957, ‘Exact nonlinear plasma oscillations’. Phys. Rev. 108, 546.

    Google Scholar 

  • Berthomier, M.: 2000, ‘Turbulence et accélération dans les zones aurorales terrestres’. Ph.D. thesis, University of Paris VI, Paris, France.

    Google Scholar 

  • Berthomier, M., R. Pottelette, and R. A. Treumann: 1999, ‘Parametric study of kinetic Alfvén solutions in a two electron temperature plasma’. Phys. Plasmas 16, 467.

    Google Scholar 

  • Berthomier, M., L. Muschietti, I. Roth, J. W. Bonnell, and C. W. Carlson: 2001, ‘Do electron holes emit VLF saucers in the auroral region: Theory versus FAST observations’. EOS Trans. Amer. Geophys. Union 82, p. F-1026.

    Google Scholar 

  • Blagoveshchenskii, D. V. and V. I. Degtyarev: 1977, ‘Radio noise level variation in the shortwave range as a function of ionospheric perturbation in the polar aurora zone’.Radiophys. Quantum Electron. 20, 1238.

    Google Scholar 

  • Boehm, M. H.: 1987, ‘Waves and static electric fields in the auroral acceleration region’.Ph.D. thesis, University of California, Berkeley.

    Google Scholar 

  • Bonnell, J.W., P. M. Kintner, J. E. Wahlund, and J. A. Holtet: 1997, ‘Modulated Langmuir waves: observations from Freja and SCIFER’. J. Geophys. Res. 102, 17233.

    Google Scholar 

  • Bonnell, J. W., P. W. Schuck, J. L. Pincon, C. E. Seyler, and P. M. Kintner: 1998, ‘Observation of bound states and counterrotating lower hybrid eigenmodes in the auroral ionosphere’.Phys. Rev. Lett. 80, 5734.

    Google Scholar 

  • Boswell, R. W.: 1976, ‘VLF hiss generated by supra-thermal electrons’. Geophys. Res.Lett. 3, 705.

    Google Scholar 

  • Bounds, S. R., R. F. Pfaff, S. F. Knowlton, F. S. Mozer, M. Temerin, and C. A. Kletzing: 1999, ‘Solitary potential structures associated with ion and electron beams near 1 RE altitude’. J. Geophys. Res. 104, 28709.

    Google Scholar 

  • Bozhkov, A. I. and N. K. Osipov: 1971, ‘Characteristic radio noise of the auroral ionosphere’. Geomagn. Aeron. 11, 859.

    Google Scholar 

  • Brittain, R., P. M. Kintner, M. C. Kelley, J. C. Siren, and D. L. Carpenter: 1983, ‘Standing wave patterns in VLF hiss’. J. Geophys. Res. 88, 7059.

    Google Scholar 

  • Budden, K. G.: 1985, The Propagation of Radio Waves. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bujarbarua, S., P. K. Shukla, and A. C. Das: 1980, ‘Excitation of ULF and VLF waves in the ionosphere’. Planet. Space Sci. 28, 1051.

    Google Scholar 

  • Burton, E. T. and E. M. Boardman: 1933, ‘Audio-frequency atmospherics’. Proc. Inst.Radio Eng. 21, 1476.

    Google Scholar 

  • Cairns, I. H. and J. D. Menietti: 1997, ‘Radiation near 2f p and intensified emissions near f p in the dayside and nightside auroral region and polar cap’. J. Geophys. Res. 102, 4787.

    Google Scholar 

  • Cairns, I. H. and J. D. Menietti: 2001, ‘Stochastic growth of waves over the Earth's polar cap’. J. Geophys. Res. 106, 29515.

    Google Scholar 

  • Calvert, W.: 1981, ‘The auroral plasma cavity’. Geophys. Res. Lett. 8, 919.

    Google Scholar 

  • Calvert, W.: 1982, ‘A feedback model for the source of auroral kilometric radiation’. J. Geophys. Res. 87, 8199.

    Google Scholar 

  • Calvert, W. and K. Hashimoto: 1990, ‘Themagnetoionicmodes and propagation properties of auroral radio emissions’. J. Geophys. Res. 95, 3943.

    Google Scholar 

  • Carlson, C., R. E. Ergun, A. J. Mallinckrodt, and G. Haerendel: 1987, ‘Observations of intense electron Bernstein wave emissions in an auroral plasma’. unpublished manuscript.

  • Carlson, C. W., J. P. McFadden, R. E. Ergun, M. Temerin, W. Peria, F. S. Mozer, D. M. Klumpar, E. G. Shelly, W. K. Peterson, E. Moebius, E. R., R. Strangeway, C. Cattell, and R. Pfaff: 1998, ‘FAST observations in the downward auroral current region: Energetic upgoing electron beams, parallel potential drops, and ion heating’. Geophys. Res. Lett. 25, 2017.

    Google Scholar 

  • Cartwright, D. G.: 1963, ‘Rocket observations of VLF radio noise at night’. Planet. Space Sci. 12, 11.

    Google Scholar 

  • Chiu, Y. T. and M. Schulz: 1978, ‘Self-consistent particle and parallel electrostatic field distributions in the magnetospheric-ionospheric auroral zone’. J. Geophys. Res. 83, 629.

    Google Scholar 

  • Chivers, H. J. A. and H. W. Wells: 1959a, ‘A new ionospheric phenomenon’. Nature 183, 1178.

    Google Scholar 

  • Chivers, H. J. A. and H. W. Wells: 1959b, ‘Observations of unusual radio frequency emission and absorption at 80 MHz’. J. Atmos. Terr. Phys. 17, 13.

    Google Scholar 

  • Corcuff, Y. and M. Tixier: 1984, ‘VLF saucers with attenuation bands’. In: The Results of the ARCAD-3 Project and Recent Programs in Magnetospheric and Ionospheric Physics. Toulouse.

  • Covington, A. E.: 1950, ‘Microwave sky noise’. J. Geophys. Res. 55, 33.

    Google Scholar 

  • Delory, G. T., R. E. Ergun, E. M. Klementis, C. W. Carlson, and J. P. McFadden: 1997, ‘Measurements of short wavelength VLF bursts in the auroral ionosphere: A case for electromagnetic mode conversion?’. Geophys. Res. Lett. 24, 1131.

    Google Scholar 

  • Doe, R. A., M. Mendillo, J. F. Vickrey, and L. J. Zanetti: 1993, ‘Observations of auroral nightside cavities’. J. Geophys. Res. 98, 293.

    Google Scholar 

  • Dovner, P. O., A. Eriksson, R. Boström, B. Holback, J. Waldemark, L. Eliasson, and M. Boehm: 1997, ‘The occurrence of lower hybrid cavities in the upper ionosphere’. Geophys. Res. Lett. 24, 619.

    Google Scholar 

  • Dowden, R. L.: 1959, ‘Low frequency (100 kHz) radio noise from the aurora’. Nature 184, 803.

    Google Scholar 

  • Dowden, R. L.: 1960, ‘Geomagnetic noise and 230 kHz’. Nature 187, 677.

    Google Scholar 

  • Dubouloz, N., R. Pottelette, M. Malingre, and R. A. Treumann: 1991, ‘Generation of broadband noise by electron acoustic solitons’. Geophys. Res. Lett. 18, 155.

    Google Scholar 

  • Dubouloz, N., R. A. Treumann, and R. Pottelette: 1993, ‘Turbulence generated by a gas of electron-acoustic solitons’. J. Geophys. Res. 98, 17, 415, and 422.

    Google Scholar 

  • Duncan, R. A. and G. R. A. Ellis: 1959, ‘Simultansous occurrence of sub-visual aurorae and radio noise bursts on 4.6 kHz’. Nature 183, 1618.

    Google Scholar 

  • Dupree, T. H.: 1982, ‘Theory of phase-space density holes’. Phys. Fluids 25, 277.

    Google Scholar 

  • Dusenbery, P. B. and L. R. Lyons: 1985, ‘Generation of Z mode radiation by diffuse auroral electron precipitation’. J. Geophys. Res. 90, 2915.

    Google Scholar 

  • Egan, R. D. and A. M. Peterson: 1960, ‘Auroral noise at HF’. J. Geophys. Res. 65, 3830.

    Google Scholar 

  • Egeland, A., H. Liao, and P. E. Sandholt: 1987, ‘Irregular, broad-band ELF/VLF emissions and optical aurora at cusp latitudes in the post-noon sector’. Annales Geophys. 5, 89.

    Google Scholar 

  • Ejiri, M., H. Fukunishi, T. Ono, H. Yamagishi, T. Hirasawa, I. Kimura, and T. Oguti: 1988, ‘Auroral phenomena observed by the Sounding Rockets S-310JA-8 to-12 at Syowa Station, Antarctica’. Geomagn. Geoelectr. 40, 763.

    Google Scholar 

  • Eliasson, L., M. Andre, R. Lundin, R. Pottelette, G. Marklund, and G. Holmgren: 1996, ‘Observations of electron conics by the Viking satellite’. J. Geophys. Res. 101, 13225.

    Google Scholar 

  • Ellis, G. R.: 1956, ‘The Z propagations hole in the ionosphere’. J. Atmos. Terr. Phys. 8, 43.

    Google Scholar 

  • Ellis, G. R.: 1957, ‘Low-frequency radio emission from aurorae’. J. Atmos. Terr. Phys. 10, 302.

    Google Scholar 

  • Ellis, G. R.: 1959, ‘Low frequency electromagnetic radiation associated with magnetic disturbances’. Planet. Space Sci. 1, 253.

    Google Scholar 

  • Ellyett, C. D.: 1969, ‘Radio noise of auroral origin’. J. Atmos. Terr. Phys. 31, 671.

    Google Scholar 

  • Ergun, R. E., C. W. Carlson, J. P. McFadden, J. H. Clemmons, and M. H. Boehm: 1991a, ‘Evidence of a transverse modulational instability in a space plasma’. Geophys. Res.Lett. 18, 1177.

    Google Scholar 

  • Ergun, R. E., C. W. Carlson, J. P. McFadden, J. H. Clemmons, and M. H. Boehm: 1991b, ‘Langmuirwave growth and electron bunching: Results from a wave-particle correlator’. J. Geophys. Res. 96, 225.

    Google Scholar 

  • Ergun, R. E., C. W. Carlson, J. P. McFadden, F. S. Mozer, G. T. Delory, W. Peria, C. C. Chaston, M. Temerin, R. Elphic, R. Strangeway, R. Pfaff, C. A. Cattell, D. Klumpar, E. Shelly, W. Peterson, E. Moebius, and L. Kistler: 1998a, ‘FAST satellite observations of large amplitude solitary structures’. Geophys. Res. Lett. 25, 2061.

    Google Scholar 

  • Ergun, R. E., C. W. Carlson, J. P. McFadden, F. S. Mozer, L. Muschietti, I. Roth, and R. J. Strangeway: 1998b, ‘Debye-scale plasma structures associated with magnetic field aligned electric fields’. Phys. Rev. Lett. 81, 826.

    Google Scholar 

  • Ergun, R. E., C. W. Carlson, J. P. McFadden, R. J. Strangeway, M. V. Goldman, and D. L. Newman: 2002, ‘FAST observations of VLF saucers’. Phys. Plasmas 9, in press.

  • Ergun, R. E., G. T. Delory, E. Klementis, C. W. Carlson, J. P. McFadden, I. Roth, and M. Temerin: 1993, ‘VLF wave growth from dispersive bursts of field-aligned electron fluxes’. J. Geophys. Res. 98, 3777.

    Google Scholar 

  • Ergun, R. E. and et al.: 1998, ‘FAST satellite wave observations in the AKR source region’. Geophys. Res. Lett. 25, 2061.

    Google Scholar 

  • Ergun, R. E., M. V. Goldman, D. L. Newman, C. W. Carlson, J. P. McFadden, and R. J. Strangeway: 2001b, ‘Electron phase-space holes and the VLF saucer source region’.Geophys. Res. Lett. 28, 3805.

    Google Scholar 

  • Ergun, R. E., E. Klementis, J. P. Carlson, McFadden, and J. H. Clemmons: 1991c, ‘Wavelength measurement of auroral hiss’. J. Geophys. Res. 96, 21, 299.

    Google Scholar 

  • Ergun, R. E., E. M. Klementis, G. T. Delory, J. P. McFadden, and C. W. Carlson: 1995, ‘VLF wave localization in the low-altitude auroral region’.Geophys. Res. Lett. 22, 2099.

    Google Scholar 

  • Eriksson, A. I., B. Holback, P. O. Dovner, R. Boström, G. Holmgren, M. André, L. Eliasson, and P. M. Kintner: 1994, ‘Freja observations of correlated small scale density depletions and enhanced lower hybrid waves’. Geophys. Res. Lett. 21, 1843.

    Google Scholar 

  • Etcheto, J., P. J. Christiansen, M. P. Gough, and J. G. Trotignon: 1982, ‘Terrestrial continuum radiation observations with GEOS-1 and ISEE-1’. Geophys. Res. Lett. 9, 1239.

    Google Scholar 

  • Farrell, W. M. and C. K. Goertz: 1990, ‘The coherent Cerenkov radiated power from a group of field-aligned test particles in a magnetoplasma’. Planet. Space Sci. 38, 373.

    Google Scholar 

  • Farrell, W. M., D. A. Gurnett, P. M. Banks, R. I. Bush, and W. J. Raitt: 1988, ‘An analysis of whistler mode radiation from Spacelab 2 electron beam’. J. Geophys. Res. 93, 153.

    Google Scholar 

  • Farrell, W. M., D. A. Gurnett, and C. K. Goertz: 1989, ‘Coherent Cerenkov radiation from Spacelab 2 electron beam’. J. Geophys. Res. 94, 443.

    Google Scholar 

  • Farrell, W. M., D. A. Gurnett, J. D. Menietti, H. K. Wong, C. S. Lin, and J. L. Burch: 1990, ‘Wave intensifications near the electron cyclotron frequency within the polar cusp’. J. Geophys. Res. 95, 6493.

    Google Scholar 

  • Forsyth, P. A., W. Petrie, and B. W. Currie: 1949, ‘Auroral radiation in the 3000-MHz region’. Nature 164, 453.

    Google Scholar 

  • Franz, J. R., P. M. Kintner, and J. S. Pickett: 1998, ‘POLAR observations of coherent electric field structures’. Geophys. Res. Lett. 25, 1277.

    Google Scholar 

  • Gallet, R. M.: 1959, ‘The VLF emissions generated in the Earth's exosphere’. Proc. Inst. Radio Eng. 47, 211.

    Google Scholar 

  • Gary, S. P. and R. L. Tokar: 1985, ‘The electron-acoustic mode’. Phys. Fluids 28, 2439.

    Google Scholar 

  • Goerke, R. T., P. J. Kellogg, S. J. Monson, R. C. Franz, R. J. Nemzek, H. R. Anderson, D. W. Potter, W. F. Denig, E. P. Szuszczewicz, and G. D. Earle: 1992, ‘Observations of VHF emissions from 50-mA electron beam injections in the ionosphere that are associated with beam-induced discharges’. J. Geophys. Res. 97, 1319.

    Google Scholar 

  • Goldman, M. V., M. Oppenheim, and D. L. Newman: 1999, ‘Nonlinear two-stream instabilities as an explanation for auroral bipolar wave structures’. Geophys. Res. Lett. 26, 1821.

    Google Scholar 

  • Goldstein, M. L., R. R. Sharma, M. Ben-Ari, A. Eviatar, and K. Papadopoulos: 1983, ‘A theory of Jovian decametric radiation’. J. Geophys. Res. 88, 792.

    Google Scholar 

  • Gorney, D. J., S. R. Church, and P. F. Mizera: 1982, ‘On ion harmonic structure in auroral zone waves: The effect of ion conic damping of auroral hiss’. J. Geophys. Res. 87, 10479.

    Google Scholar 

  • Gough, M. P., P. J. Christiansen, and K. Wilhelm: 1990, ‘Auroral beam/plasma interactions: Particle correlator investigations’. J. Geophys. Res. 95, 12287.

    Google Scholar 

  • Gough, M. P. and A. Urban: 1983, ‘Auroral beam/plasma interaction observed directly’. Planet. Space Sci. 31, 875.

    Google Scholar 

  • Greenberg, E. M. and J. LaBelle: 2001, ‘Measurement and modeling of auroral absorption of HF radio waves using a single receiver’. Radio Sci. 36, 10.1029/2000RS002550.

  • Greenwald, R. A. and et al.: 1995, ‘DARN/SUPERDARN: A global view of the dynamics of high-latitude convection’. Space Sci. Rev. 71, 761.

    Google Scholar 

  • Gregory, P. C.: 1969, ‘Radio emission from auroral electrons’. Nature 221, 350.

    Google Scholar 

  • Gregory, P. C.: 1971, ‘Satellite observations of magnetosperic radio noise-I’. Planet. Space Sci. 19, 813.

    Google Scholar 

  • Groves, K. M., M. C. Lee, and S. P. Kuo: 1988, ‘Spectral broadening of VLF radio signals traversing the ionosphere’. J. Geophys. Res. 93, 14683.

    Google Scholar 

  • Gurnett, D. A.: 1966, ‘A satellite study of VLF hiss’. J. Geophys. Res. 71, 5599.

    Google Scholar 

  • Gurnett, D. A.: 1974, ‘The Earth as a radio source: Terrestrial kilometric radiation’. J. Geophys. Res. 79, 4227.

    Google Scholar 

  • Gurnett, D. A.: 1978, ‘Electromagnetic plasma wave emissions from the auroral field lines’. Geomagn. Geoelectr. 30, 257.

    Google Scholar 

  • Gurnett, D. A.: 1983, ‘High latitude electromagnetic wave emissions to auroral acceleration processes’. In: B. Hultqvist and T. Hagfors (eds.): High Latitude Plasma Physics. New York: Plenum, pp. 355.

    Google Scholar 

  • Gurnett, D. A.: 1991, ‘Auroral plasma waves’. In: C. I. Meng, M. J. Rycroft, and L. A. Frank (eds.): Auroral Physics. Cambridge: Cambridge University Press, p. 241.

    Google Scholar 

  • Gurnett, D. A. and R. R. Anderson: 1981, ‘The kilometric radio emission spectrum: Relationship to auroral acceleration processes’. In: S.-I. Akasofu and J. R. Kan (eds.): Physics of Auroral Arc Formation. Washington, D.C.: American Geophys. Union, p.341.

    Google Scholar 

  • Gurnett, D. A. and L. A. Frank: 1972, ‘VLF hiss and related plasma observations in the polar magnetosphere’. J. Geophys. Res. 77, 172.

    Google Scholar 

  • Gurnett, D. A. and L. A. Frank: 1978, ‘Plasma waves in the polar cusp: Observations from Hawkeye 1’. J. Geophys. Res. 83, 1447.

    Google Scholar 

  • Gurnett, D. A., W. Kurth, J. T. Steinberg, P. M. Banks, R. I. Bush, and W. J. Raitt: 1986, ‘Whistler mode radiation from the Spacelab-2 electron beam’. Geophys. Res. Lett. 13, 225.

    Google Scholar 

  • Gurnett, D. A. and S. R. Mosier: 1969, ‘VLF electric and magnetic fields observed in the auroral zone with the Javelin 8.46 sounding rocket’. J. Geophys. Res. 74, 3979.

    Google Scholar 

  • Gurnett, D. A., S. R. Mosier, and R. R. Anderson: 1971, ‘Color spectrograms of VLF Poynting flux data’. J. Geophys. Res. 76, 3022.

    Google Scholar 

  • Gurnett, D. A., G. W. Pfeiffer, R. R. Anderson, S. R. Mosier, and D. P. Cauffman: 1969, ‘Initial observations of VLF electric and magnetic fields with the Injun 5 satellite’. J. Geophys. Res. 74, 4631.

    Google Scholar 

  • Gurnett, D. A., S. D. Shawhan, and R. R. Shaw: 1983, ‘Auroral hiss, Z mode radiation, and auroral kilometric radiation in the polar magnetosphere: DE 1 observations’. J. Geophys. Res. 88, 329.

    Google Scholar 

  • Harang, L.: 1968, ‘VLF emissions observed at latitudes close to the auroral zone and at stations on lower latitudes’. J. Atmos. Terr. Phys. 30, 1143.

    Google Scholar 

  • Harang, L.: 1969a, ‘Bursts of VLF-emissions simultaneous with sharp dip of absorption and SC in geomagnetic H’. Planet. Space Sci. 17, 1565.

    Google Scholar 

  • Harang, L.: 1969b, ‘Radio noise from aurora’. Planet. Space Sci. 17, 869.

    Google Scholar 

  • Harang, L. and K. N. Hauge: 1965, ‘Radio wave emissions in the v.l.f.-band observed near the auroral zone–II The physical properties of the emissions’. J. Atmos. Terr. Phys. 27, 499.

    Google Scholar 

  • Harang, L. and R. Larsen: 1965, ‘Radio wave emissions in the v.l.f.-band observed near the auroral zone–I Occurrence of emissions during disturbances’. J. Atmos. Terr. Phys. 27, 481.

    Google Scholar 

  • Hartz, T.: 1958, ‘Auroral radiation at 500 MHz’. Can. J. Phys. 36, 677.

    Google Scholar 

  • Hartz, T.: 1970, ‘Low frequency noise emissions and their significance for energetic particle processes in the polar magnetosphere’. In: G. Skouli (ed.): The Polar Ionosphere and Magnetospheric Processes. New York: Gordon and Breach, pp. 151.

    Google Scholar 

  • Hartz, T. and N. M. Brice: 1967, ‘The general pattern of auroral particle precipitation’. Planet. Space Sci. 15, 301.

    Google Scholar 

  • Hashimoto, K. and W. Calvert: 1990, ‘Observation of the Z mode with DE 1 and its analysis by three-dimensional ray tracing’. J. Geophys. Res. 95, 3933.

    Google Scholar 

  • Hayakawa, M. and S. S. Sazhin: 1992, ‘Mid-latitude and plasmaspheric hiss: A review’. Planet. Space Sci. 40, 1325.

    Google Scholar 

  • Hayakawa, M., Y. Tanaka, and J. Ohtsu: 1975, ‘The morphologies of low-latitude and auroral VLF hiss’. J. Atmos. Terr. Phys. 37, 517.

    Google Scholar 

  • Heinselman, C. J. and J. F. Vickrey: 1992, ‘On the frequency of Langmuir waves in the ionosphere’. J. Geophys. Res. 97, 14905.

    Google Scholar 

  • Helliwell, R. A.: 1965,Whistlers and Related Ionospheric Phenomena. Stanford: Stanford University Press.

    Google Scholar 

  • Helliwell, R. A.: 1969, ‘Low-frequency waves in the magnetosphere’. Rev. Geophys. 7, 281.

    Google Scholar 

  • Hewitt, R. G., D. B. Melrose, and G. A. Dulk: 1983, ‘Cyclotron maser emission of auroral Z mode radiation’. J. Geophys. Res. 88, 10065.

    Google Scholar 

  • Hoffman, R. A. and T. Laaspere: 1972, ‘Comparison of very-frequency auroral hiss with precipitating low-energy electrons by the use of simultaneous data from two Ogo 4 experiments’. J. Geophys. Res. 77, 640.

    Google Scholar 

  • Horita, R. E.: 1972, ‘Wave-particle interaction around the lower hybrid resonance’. Planet. Space Sci. 20, 409.

    Google Scholar 

  • Horita, R. E.: 1977, ‘The source regions of fine structure in whistlers, auroral hiss and ELF hiss’. J. Atmos. Terr. Phys. 39, 793.

    Google Scholar 

  • Horita, R. E., L. Friesen, and A. W. Y. Chan: 1976, ‘Ion gyrofrequency phenomena observed on whistlers, auroral hiss and ELF hiss’. J. Atmos. Terr. Phys. 38, 677.

    Google Scholar 

  • Horita, R. E. and H. G. James: 1982, ‘Source regions deduced from attenuation bands in VLF saucers’. J. Geophys. Res. 87, 9147.

    Google Scholar 

  • Horne, R. B.: 1995, ‘Propagation to the ground at high latitudes of auroral radio noise below the electron gyrofrequency’. J. Geophys. Res. 100, 14637.

    Google Scholar 

  • Hower, G. L. and F. C. Dunlap: 1966, ‘High frequency auroral noise’. J. Geophys. Res. 71, 1512.

    Google Scholar 

  • Hower, G. L. and W. I. Gluth: 1965, ‘Associations between VLF hiss and HF radar echoes from field-aligned ionization’. J. Geophys. Res. 70, 649.

    Google Scholar 

  • Hower, G. L. and A. M. Peterson: 1964, ‘Synchrotron radiation from auroral electrons’. J. Geophys. Res. 69, 3995.

    Google Scholar 

  • Hoymork, S. H., H. L. Pecseli, B. Lybekk, J. Trulsen, and A. Eriksson: 2000, ‘Cavitation of lower hybrid waves in the Earth's ionosphere, a model analysis’. J. Geophys. Res. 105, 18519.

    Google Scholar 

  • Hughes, A. R. W., T. R. Kaiser, and K. Bullough: 1971, ‘The frequency of occurrence of VLF radio emissions at high latitudes’. Adv. Space Res. 9, 1323.

    Google Scholar 

  • Hughes, J. M. and J. LaBelle: 1998, ‘The latitude dependence of auroral roar’. J. Geophys. Res. 103, 14911.

    Google Scholar 

  • Hughes, J. M. and J. LaBelle: 2001a, ‘First observations of flickering auroral roar’. Geophys. Res. Lett. 28, 123.

    Google Scholar 

  • Hughes, J. M. and J. LaBelle: 2001b, ‘Plasma conditions in auroral roar source regions inferred from radio and radar observations’. J. Geophys. Res. 106, 21157.

    Google Scholar 

  • Hughes, J. M., J. LaBelle, and M. L. Trimpi: 2000, ‘A medium frequency interferometer for studying auroral radio emissions’. Rev. Sci. Instr. 71, 3200.

    Google Scholar 

  • Hughes, J. M., J. LaBelle, and J. Watermann: 2001, ‘Statistical and case studies of 2f ce auroral roar observed with a medium frequency interferometer’. J. Geophys. Res. 106, 21147.

    Google Scholar 

  • Hui, C. H. and C. E. Seyler: 1993, ‘Parametric extinction of the electrostatic whistler and Z mode by auroral kilometric radiation’. J. Geophys. Res. 98, 11,701.

    Google Scholar 

  • Inan, U. S. and T. F. Bell: 1977, ‘The plasmapause as a VLF waveguide’. J. Geophys. Res. 82, 2819.

    Google Scholar 

  • Iverson, I. B., O. H. Olesen, and E. Ungstrup: 1968, ‘Observation of VLF radio noise in the ionosphere during an auroral absorption event’. Annales Geophys. 24, 313.

    Google Scholar 

  • Jackson, J. D.: 1962, Classical Electrodynamics. New York: Wiley and Sons.

    Google Scholar 

  • James, H. G.: 1972, ‘Refraction of whistler mode waves by large scale gradients in the middle latitude ionosphere’. Annales Geophys. 28, 301.

    Google Scholar 

  • James, H. G.: 1973a, ‘Spin modulation of high-latitude hiss measures by an electric dipole’. Radio Sci. 8, 1133.

    Google Scholar 

  • James, H. G.: 1973b, ‘Whistler-mode hiss at low and medium frequencies in the daysidecusp ionosphere’. J. Geophys. Res. 78, 4578.

    Google Scholar 

  • James, H. G.: 1976, ‘VLF saucers’. J. Geophys. Res. 81, 501.

    Google Scholar 

  • James, H. G.: 1993, ‘Ionospheric wave emissions passivly detected by the OEDIPUS A tether’. J. Geophys. Res. 98, 19099.

    Google Scholar 

  • James, H. G., E. L. Hagg, and L. P. Strange: 1974, ‘Narrowband radio noise in the topside ionosphere’. AGARD Conf. Proc. AGARD-CP-138, 24.

    Google Scholar 

  • Jones, D.: 1976, ‘The second Z-propagation window’. Nature 262, 674.

    Google Scholar 

  • Jorgensen, T. S.: 1966, ‘Morphology of VLF hiss zones and their correlation with particle precipitation events’. J. Geophys. Res. 71, 1367.

    Google Scholar 

  • Jorgensen, T. S.: 1968, ‘Interpretation of auroral hiss measured on OGO 2 and at Byrd Station of incoherent Cerenkov radiation’. J. Geophys. Res. 73, 1055.

    Google Scholar 

  • Jorgensen, T. S. and E. Ungstrup: 1962, ‘Direct observation of the correlation between aurorae and hiss in Greenland’. Nature 194, 462.

    Google Scholar 

  • Juhl, B. and R. A. Treumann: 1985, ‘VLF emission stimulated by parallel electric fields’. J. Plasma Phys. 34, 47.

    Google Scholar 

  • Kadomstev, B. B.: 1965, Plasma Turbulence. New York: Academic Press.

    Google Scholar 

  • Kaiser, M. L., M. D. Desch, W. M. Farrell, R. A. Hess, and R. J. MacDowall: 1993, ‘Ordinary and Z-Mode emissions from the Jovian polar region’. Planet. Space Sci. 41, 977.

    Google Scholar 

  • Kasahara, Y., K. Yoshida, T. Matsuo, and K. I.: 1995, ‘Propagation characteristics of auroral hiss observed by Akebono satellite’. Geomagn. Geoelectr. 47, 509.

    Google Scholar 

  • Kaufmann, R. L.: 1980, ‘Electrostatic wave growth: secondary peaks in measured auroral electron distribution functions’. J. Geophys. Res. 85, 1713.

    Google Scholar 

  • Kaufmann, R. L., P. B. Dusenbery, and B. J. Thomas: 1978, ‘Stability of the auroral plasma: Parallel and perpendicular propagation of electrostatic waves’. J. Geophys. Res. 83, 5663.

    Google Scholar 

  • Kelley, M. C. and G. D. Earle: 1988, ‘Upper hybrid and langmuir turbulence in the auroral E region’. J. Geophys. Res. 93, 1993.

    Google Scholar 

  • Kellogg, P. J. and S. J. Monson: 1979, ‘Radio emissions from the aurora’. Geophys. Res. Lett. 6, 297.

    Google Scholar 

  • Kellogg, P. J. and S. J. Monson: 1984, ‘Further studies of auroral roar’. Radio Sci. 19, 551.

    Google Scholar 

  • Kellogg, P. J., S. J. Monson, and B. A. Whalen: 1978, ‘Rocket observation of high frequency waves over a strong aurora’. Geophys. Res. Lett. 5, 47.

    Google Scholar 

  • Kennel, C. F. and M. Ashour-Abdalla: 1984, ‘Electrostatic waves and the strong diffusion of magnetospheric electrons’. In: A. Nishida (ed.): Magnetospheric Plasma Physics. Dordrecht: D. Reidel, pp. 245.

    Google Scholar 

  • Kimura, I.: 1966, ‘Effects of ions on whistler mode ray tracing’. Radio Sci. 1, 269.

    Google Scholar 

  • Kintner, P. M., J. Bonnell, S. Powell, and J. E. Wahlund: 1995, ‘First results from the Freja HF snapshot receiver’. Geophys. Res. Lett. 22, 287.

    Google Scholar 

  • Kintner, P. M., J. Franz, P. Schuck, and E. Klatt: 2000, ‘Interferometric coherency determination of wavelength or what are broadband ELF waves?’. J. Geophys. Res. 105, 21237.

    Google Scholar 

  • Kintner, P. M., W. Scales, J. Vago, A. Yau, B. Whalen, R. Arnoldy, and T. Moore: 1991, ‘Harmonic proton gyrofrequency structures in the auroral hiss observed by high-altitude auroral sounding rockets’. J. Geophys. Res. 96, 9627.

    Google Scholar 

  • Kintner, P. M., J. Vago, S. Chesney, R. L. Arnoldy, K. A. Lynch, C. J. Pollock, and T. E. Moore: 1992, ‘Localized lower hybrid acceleration of ionospheric plasma’. Phys. Rev. Lett. 68, 2448.

    Google Scholar 

  • Kiraga, A., Z. Klos, and H. Rothkaehl: 1987, ‘Some type of broadband emission in the hectometric frequency range observed within the ionosphere’. Adv. Space Res. 35, 895.

    Google Scholar 

  • Kisabeth, J. L. and G. Rostoker: 1979, ‘Relationship of noise in the frequency range 100 <f < 500 kHz to auroral arcs field-aligned current and implications regarding acceleration of auroral electrons’. J. Geophys. Res. 84, 853.

    Google Scholar 

  • Kjus, S. H., L. Eliasson, H. L. Pecseli, B. Lybekk, J. Holtet, P. Norqvist, J. Trulsen, and A. Eriksson: 1998a, ‘Lower hybrid waves in the Earth's upper ionosphere wave cavitation and ion energization’. In: T. Chang (ed.): Physics of Space Plasmas. Cambridge: Scientific Publishers, p. 209.

    Google Scholar 

  • Kjus, S. H., H. L. Pecseli, B. Lybekk, J. Holtet, J. Trulsen, H. Luehr, and A. Eriksson: 1998b, ‘Statistics of the lower hybrid wave cavities detected by the FREJA satellite’. J. Geophys. Res. 103, 26633.

    Google Scholar 

  • Klos, Z.: 1992, ‘HF emission in the topside ionosphere’. Adv. Space Res. 9, 319.

    Google Scholar 

  • Klumpar, D. M.: 1975, ‘Evidence for ion acceleration by VLF waves above the auroral ionosphere (abstract)’. Phys. Can. 31, 53.

    Google Scholar 

  • Knudsen, D. J., J. K. Burchill, D. D. Wallis, R. F. Pfaff, J. H. Clemmons, and S. R. Bounds: 2001, ‘Electromagnetic wave and particle signatures of lower-hybrid cavities’. EOS Trans. Amer. Geophys. Union 82, S-358.

    Google Scholar 

  • Knudsen, D. J., P. O. Dovner, A. I. Eriksson, and K. A. Lynch: 1998, ‘Effect of lower hybrid cavities on core plasma observed by FREJA’. J. Geophys. Res. 103, 4241.

    Google Scholar 

  • Knudsen, D. J., D. D. Wallis, and H. G. James: 1999, ‘Tethered two-point measurements of solitary auroral density cavities’. Geophys. Res. Lett. 26, 2933.

    Google Scholar 

  • Kokubun, S., K. Makita, and T. Hirasawa: 1972, ‘VLF-LF hiss during polar substorm’. Geophys. Res. Lett. 26, 138.

    Google Scholar 

  • Koskinen, H. E. J.: 1986, ‘Parametric processes of lower hybrid waves in multicomponent auroral plasmas’. In: T. Chang (ed.): Ion Acceleration in the Magnetosphere and Ionosphere, Vol. 38. Washington, D.C.: American Geophys. Union, p. 291.

    Google Scholar 

  • Koskinen, H. E. J., G. Holmgren, and P. M. Kintner: 1983, ‘Observations of LHR noise with banded structure by the sounding rocket Barium-GEOS’. J. Geophys. Res. 88, 4131.

    Google Scholar 

  • Krasovskiy, V. L., Y. V. Kushnerevskiy, V. V. Mugulin, V. N. Orayevskiy, and S. A. Pulinets: 1983, ‘Ballistic wave transformation as a mechanism, for the linkage of terrestrial kilometric radio waves with low-frequency noise in the upper atmosphere’. Geomagn. Aeron. 23, 702.

    Google Scholar 

  • Krauss-Varban, D. and H. K. Wong: 1990, ‘Energy of auroral electrons and Z mode generation’. J. Geophys. Res. 95, 12149.

    Google Scholar 

  • Kumar, S., S. K. Dixit, and A. K. Gwal: 1997, ‘Electron cyclotron waves in the presence of parallel electric fields in the Earth's auroral plasma’. Annales Geophys. 15, 24.

    Google Scholar 

  • Laaspere, T. and R. A. Hoffman: 1976, ‘New results on the correlation between low-energy electrons and auroral hiss’. J. Geophys. Res. 81, 524.

    Google Scholar 

  • Laaspere, T. and W. C. Johnson: 1973, ‘Additional results from an Ogo-6 experiment concerning ionospheric electric and electromagnetic fields in the range 20 Hz to 540 kHz’. J. Geophys. Res. 78, 2926.

    Google Scholar 

  • Laaspere, T.,W. C. Johnson, and L. C. Semprebon: 1971, ‘Observations of auroral hiss, lhr noise, and other phenomena in the frequency range Hz-540 kHz on Ogo 6’. J. Geophys. Res. 76, 4477.

    Google Scholar 

  • LaBelle, J.: 1989, ‘Radio noise of auroral origin: 1968-1988’. J. Atmos. Terr. Phys. 51, 197.

    Google Scholar 

  • LaBelle, J. and J. M. Hughes: 2001, ‘Observations of auroral roar emissions at polar cap latitudes: results from the early polar cap observatory’. Radio Sci. 36, 1859.

    Google Scholar 

  • LaBelle, J., J. M. Hughes, P. Yoon, A. T. Weatherwax, and L. F. Ziebell: 2000, ‘First observations of flickering auroral roar’. EOS Trans. Amer. Geophys. Union 81, F-1031.

    Google Scholar 

  • LaBelle, J. and P. M. Kintner: 1989, ‘The measurement of wavelength in space plasmas’. Rev. Geophys. 27, 495.

    Google Scholar 

  • LaBelle, J., P. M. Kintner, A. W. Yau, and B. A. Whalen: 1986, ‘Large amplitude wave packets observed in the ionosphere in association with transverse ion acceleration’. J. Geophys. Res. 91, 7113.

    Google Scholar 

  • LaBelle, J., K. L. McAdams, and M. L. Trimpi: 1999, ‘High-frequency and time resolution rocket observations of structured low-and medium-frequency whistler mode emissions in the auroral ionosphere’. J. Geophys. Res. 104, 28101.

    Google Scholar 

  • LaBelle, J., S. G. Shepherd, and M. L. Trimpi: 1997, ‘Observations of auroral medium frequency bursts’. J. Geophys. Res. 102, 22221.

    Google Scholar 

  • LaBelle, J., M. L. Trimpi, R. Brittain, and A. T. Weatherwax: 1995, ‘Fine structure of auroral roar emissions’. J. Geophys. Res. 100, 21953.

    Google Scholar 

  • LaBelle, J. and A. T. Weatherwax: 2002, ‘Statistical study of auroral roar emissions at South Pole Station’. J. Geophys. Res. 107, 10.1029/2001JA000167.

  • LaBelle, J., A. T. Weatherwax, J. Perring, E. Walsh, M. L. Trimpi, and U. Inan: 1998, ‘Low-frequency impulsive auroral hiss observations at high geomagnetic latitudes’. J. Geophys. Res. 103, 20459.

    Google Scholar 

  • LaBelle, J., A. T. Weatherwax, M. L. Trimpi, R. Brittain, and J. V. Hunsucker, R. D. and Olson: 1994, ‘The spectrum of LF/MF/HF radio noise at ground level during substorms’. Geophys. Res. Lett. 21, 2749.

    Google Scholar 

  • Laxmi, V. N. and V. K. Tripathi: 1990, ‘Nonlinear mixing of beam driven Bernstein modes and electromagnetic emissions at cyclotron harmonics in the ionosphere’. J. Geophys. Res. 95, 15269.

    Google Scholar 

  • Lembege, B. and D. Jones: 1982, ‘Propagation of electrostatic upper hybrid emission and Z mode waves at the geomagnetic equatorial plasmapause’. J. Geophys. Res. 87, 6187.

    Google Scholar 

  • Liehmohn, H. B.: 1965, ‘Radiation from Electrons in Magnetoplasma’. Radio Sci. 69, 741.

    Google Scholar 

  • Lim, T. L. and T. Laaspere: 1972, ‘An Evaluation of the Intensity of Cerenkov Radiation from Auroral Electrons with Energies down to 100 eV’. J. Geophys. Res. 77, 4145.

    Google Scholar 

  • Lin, C. S. and J. L. Burch: 1984, ‘Correlation of Auroral Hiss and Upward Electron Beams near the Polar Cusp’. J. Geophys. Res. 89, 925.

    Google Scholar 

  • Lin, C. S., J. L. Burch, C. Gurgiolo, and C. S. Wu: 1986, ‘DE-1 observations of hole electron distribution functions and the cyclotron maser resonance’. Annales Geophys. 4, 19.

    Google Scholar 

  • Lin, C. S., J. D. Menietti, and H. K. Wong: 1990, ‘Perpendicular heating of electrons by upper hybrid waves generated by a ring distribution’. J. Geophys. Res. 95, 12295.

    Google Scholar 

  • Lin, C. S., D. Winske, and R. L. Tokar: 1985, ‘Simulation of the electron acoustic instability in the polar cusp’. J. Geophys. Res. 90, 8269.

    Google Scholar 

  • Lönnqvist, H., L. Andre, Matson, A. Bahnsen, L. G. Blomberg, and R. E. Erlandson: 1993, ‘Generation of VLF saucer emissions observed by the Viking satellite’. J. Geophys. Res. 98, 13565.

    Google Scholar 

  • Lotko, W. and J. E. Maggs: 1981, ‘Amplification of electrostatic noise in cyclotron resonance with an adiabatic auroral beam’. J. Geophys. Res. 86, 3449.

    Google Scholar 

  • Lynch, K. A., R. A. Arnoldy, P. M. Kintner, and J. Bonnell: 1996a, ‘The AMICIST auroral sounding rocket: A comparison of transverse ion acceleration mechanisms’. Geophys. Res. Lett. 23, 3293.

    Google Scholar 

  • Lynch, K. A., R. A. Arnoldy, P. M. Kintner, and S. Chesney: 1996b, ‘Lower hybrid spikelets: Auroral butterflies or magnetospheric thermometers?’. In: T. Chang (ed.): Physics of Space Plasmas. Cambridge: Scientific Publishers, p. 339.

    Google Scholar 

  • Lynch, K. A., R. A. Arnoldy, P. M. Kintner, P. Schuck, J.W. Bonnell, and V. Coffey: 1999, ‘Auroral ion acceleration from lower hybrid solitary structures: A summary of sounding rocket observations’. J. Geophys. Res. 104, 28515.

    Google Scholar 

  • Maeda, K.: 1975, ‘A calculation of auroral hiss with improved models for geoplasma and macgnetic field’. Planet. Space Sci. 23, 843.

    Google Scholar 

  • Maeda, K., S. F. Fung, and W. Calvert: 1990, ‘Ion cyclotron bands in VLF saucers’. Planet. Space Sci. 38, 507.

    Google Scholar 

  • Maeda, K. and T. Watanabe: 1995, ‘Ionospheric disturbances and radio noise increase associated with the low-latitude aurora on Oct. 21, 1989’. Annales Geophys. 13, 66.

    Google Scholar 

  • Maggs, J. E.: 1976, ‘Coherent generation of VLF hiss’. J. Geophys. Res. 81, 1707.

    Google Scholar 

  • Maggs, J. E.: 1978, ‘Electrostatic noise generated by the auroral electron beam’. J. Geophys. Res. 83, 3173.

    Google Scholar 

  • Maggs, J. E.: 1989, ‘Nonlinear evolution of the auroral electron beam’. J. Geophys. Res. 94, 3631.

    Google Scholar 

  • Maggs, J. E. and W. Lotko: 1981, ‘Altitude dependent model of the auroral beam and beam-generated electrostatic noise’. J. Geophys. Res. 86, 3439.

    Google Scholar 

  • Makita, K.: 1979, ‘VLF/LF hiss emissions associated with aurora’. Mem. Nat. Int. Polar Res. 16, 1.

    Google Scholar 

  • Malingre, M., R. Pottelette, R. A. Treumann, and M. Berthomier: 1997, ‘Observation of broadband wave bursts with power law spectra above the plasma frequency in the underdense auroral plasma’. J. Geophys. Res. 102, 19861.

    Google Scholar 

  • Mallinckrodt, A. J.: 1980, ‘Rocket observations of natural and artificially stimulated phenomena within a quiet auroral arc’. Ph.D. thesis, University of California, Berkeley.

    Google Scholar 

  • Mansfield, V. N.: 1967, ‘Radiation from a charged particle spiraling in a cold magnetoplasma’. Astrophys. J. 147, 672.

    Google Scholar 

  • Martin, L. H., R. A. Helliwell, and K. E. Marks: 1960, ‘Association between aurorae and VLF hiss observed at Byrd Station, Antarctica’. Nature 187, 751.

    Google Scholar 

  • Matsuo, T., T. Nishiyama, and D. Matuhara: 1998, ‘Propagation of a quasi electrostatic whistler mode auroral hiss to the ground’. Proc. NIPR Symp. Upper Atmos. Phys. 12, 12.

    Google Scholar 

  • McAdams, K. L., R. E. Ergun, and J. LaBelle: 2000, ‘HF chirps: Eigenmode trapping in density depletions’. Geophys. Res. Lett. 27, 321.

    Google Scholar 

  • McAdams, K. L. and J. LaBelle: 1999, ‘Narrowband structure in HF waves above the electron plasma frequency in the auroral ionosphere’. Geophys. Res. Lett. 26, 1825.

    Google Scholar 

  • McAdams, K. L., J. LaBelle, P. W. Schuck, and P. M. Kintner: 1998, ‘PHAZE-II observations of lower hybrid burst stuctures occurring on density gradients’. Geophys. Res. Lett. 25, 3091.

    Google Scholar 

  • McAdams, K. L., J. LaBelle, M. L. Trimpi, P. M. Kintner, and R. A. Arnoldy: 1999, ‘Rocket observations of banded stucture in waves near the Langmuir frequency in the auroral ionosphere’. J. Geophys. Res. 104, 28109.

    Google Scholar 

  • McBride, J. B., E. Ott, J. P. Boris, and J. H. Orens: 1972, ‘Theory and simulation of turbulent heating by the modified two-stream instability’. Phys. Fluids 15, 2367.

    Google Scholar 

  • McEwen, D. J. and R. E. Barrington: 1967, ‘Some characteristics of the lower hybrid resonance noise bands observed by the Alouette 1 satellite’. Can. J. Phys. 45, 13.

    Google Scholar 

  • McFadden, J. P., C.W. Carlson, and M. H. Boehm: 1986, ‘High-frequencywaves generated by auroral electrons’. J. Geophys. Res. 91, 12079.

    Google Scholar 

  • Melrose, D. B.: 1976, ‘An interpretation of Jupiter's radiation and the terrestrial kilometric radiation as direct amplified gyroemission’. Astrophys. J. 207, 651.

    Google Scholar 

  • Melrose, D. B.: 1986, Instabilities in Space and Laboratory Plasmas. Cambridge: Cambridge University Press.

    Google Scholar 

  • Melrose, D. B.: 1991, ‘Emission at cyclotron harmonics due to coalescence of Z mode waves’. Astrophys. J. 380, 256.

    Google Scholar 

  • Melrose, D. B. and G. A. Dulk: 1984, ‘Radio frequency heating of the coronal plasma during flares’. Astrophys. J. 282, 308.

    Google Scholar 

  • Melrose, D. B., R. G. Hewitt, and G. A. Dulk: 1984, ‘Electron-cyclotron maser emission: Relative growth and damping rates for differentmodes and harmonics’. J. Geophys. Res. 89, 897.

    Google Scholar 

  • Melrose, D. B. and S. M. White: 1980, ‘Amplified Cerenkov emission of auroral hiss: Limitations implied by quasi-linear theory’. J. Geophys. Res. 85, 3442.

    Google Scholar 

  • Menietti, J. D., I. H. Cairns, C. W. Piker, and T. F. Averkamp: 1998, ‘Statistical study of emissions near f p and 2f p in the dayside and nightside auroral region and polar cap’. J. Geophys. Res. 103, 14925.

    Google Scholar 

  • Menietti, J. D. and C. S. Lin: 1985, ‘Ray tracing of Z-mode from source regions in the high-altitude auroral zone’. Geophys. Res. Lett. 12, 385.

    Google Scholar 

  • Menietti, J. D. and C. S. Lin: 1986, ‘Ray tracing survey of Z mode emissions from source regions in the high-altitude auroral zone’. J. Geophys. Res. 91, 13559.

    Google Scholar 

  • Menietti, J. D., C. S. Lin, H. K. Wong, A. Bahnsen, and D. A. Gurnett: 1992, ‘Association of electron, conical distributions with upper hybrid waves’. J. Geophys. Res. 97, 1353.

    Google Scholar 

  • Menietti, J. D., A. M. Persoon, J. S. Pickett, and D. A. Gurnett: 2000, ‘Statistical study of auroral kilometric radiation fine structure striations observed by Polar’. J. Geophys. Res. 105, 18857.

    Google Scholar 

  • Menietti, J. D., D. R. Weimer, M. André, and L. Eliasson: 1994, ‘DE-1 and VIKING observations associated with electron conical distributions’. J. Geophys. Res. 99, 23673.

    Google Scholar 

  • Mishin, E. V. and V. Fiala: 1995, ‘Radiation of whistlers by the ion-acoustic turbulence in the ionosphere’. J. Geophys. Res. 100, 19695.

    Google Scholar 

  • Mishin, E. V. and J. LaBelle: 1998, ‘On transition radiation mechanism as a source of auroral HF/VHF radio noise’. EOS Trans. Amer. Geophys. Union 79, S-242.

    Google Scholar 

  • Mishin, E. V. and Y. Y. Ruzhin: 1980, ‘The dynamics of HF radio emission in the ARAKS experiment’. Annales Geophys. 36, 357.

    Google Scholar 

  • Misra, K. D. and B. D. Singh: 1980, ‘On the modifications of the whistler mode instability in the magnetosphere in the presence of parallel electric field by cold particle injection’. J. Geophys. Res. 85, 5138.

    Google Scholar 

  • Miyaoka, H., H. Oya, and S. Miyatake: 1981, ‘Observations ofMF-HF plasma wave emissions in the polar ionosphere using the Antarctic rockets S-310JA-4 and S-310JA-6’. Mem. Nat. Int. Polar Res. 18, 462.

    Google Scholar 

  • Mizera, P. F., D. J. Gorney, and J. F. Fenell: 1982, ‘Experimental verification of an S-shaped potential structure’. J. Geophys. Res. 87, 1535.

    Google Scholar 

  • Morgan, D. D., D. A. Gurnett, and W. S. Kurth: 1994a, ‘The Source of Jovian auroral hiss observed by Voyager 1’. J. Geophys. Res. 99, 21213.

    Google Scholar 

  • Morgan, D. D., D. A. Gurnett, J. D. Menietti, J. D. Winningham, and J. L. Burch: 1994b, ‘Landau damping of auroral hiss’. J. Geophys. Res. 99, 2471.

    Google Scholar 

  • Morgan, M. G.: 1977a, ‘Auroral hiss on the ground at L = 4’. J. Geophys. Res. 82, 2387.

    Google Scholar 

  • Morgan, M. G.: 1977b, ‘Wide-band observations of LF hiss at Frobisher Bay (L = 14.6)’. J. Geophys. Res. 82, 2377.

    Google Scholar 

  • Morioka, A. and H. Oya: 1985, ‘Emissions of plasma waves from VLF and LF ranges in the magnetic polar regions-new evidences obtained from the data of the Ohzora (EXOS-C) satellite’. Geomagn. Geoelectr. 37, 263.

    Google Scholar 

  • Morioka, A., H. Oya, H. Miyaoka, T. Ono, T. Obara, H. Yamagishi, and H. Fukunishi: 1988, ‘Wave-particle interaction in the auroral ionosphere in LF and HF range: Results from antarctic rocket observations’. Geomagn. Geoelectr. 40, 923.

    Google Scholar 

  • Morozumi, H. M.: 1965, ‘Diurnal variations of auroral zone geophysical disturbances’. Rep. Ionosph. Space Res., Japan 19, 286.

    Google Scholar 

  • Mosier, S. R.: 1971, ‘Poynting flux studies of hiss with the Injun 5 satellite’. J. Geophys. Res. 76, 1713.

    Google Scholar 

  • Mosier, S. R. and D. A. Gurnett: 1969, ‘VLF measurements of the Poynting flux along the geomagnetic field with the Injun 5 satellite’. J. Geophys. Res. 74, 5675.

    Google Scholar 

  • Mosier, S. R. and D. A. Gurnett: 1972, ‘Observed correlations between auroral and VLF emissions’. J. Geophys. Res. 77, 1137.

    Google Scholar 

  • Mourenas, D. and V. Krasnosel'skikh: 1993, ‘A numerical study of instabilities producing auroral broadband electrostatic bursts’. Annales Geophys. 11, 711.

    Google Scholar 

  • Mozer, F. S., C. A. Cattell, M. K. Hudson, R. L. Lysak, M. Temerin, and R. B. Torbert: 1980, ‘Satellite measurements and theories of low altitude auroral particle acceleration’. Space Sci. Rev. 27, 155.

    Google Scholar 

  • Muldrew, D. B.: 1970, ‘Preliminary results of ISIS-1 concerning electron density variations, ionospheric resonances, and Cerenkov radiation’. Adv. Space Res. 10, 786.

    Google Scholar 

  • Muschietti, L., R. E. Ergun, I. Roth, and C. W. Carlson: 1999, ‘Phase-space electron holes along magnetic field lines’. Geophys. Res. Lett. 26, 1093.

    Google Scholar 

  • Muschietti, L., I. Roth, C. W. Carlson, and R. E. Ergun: 2000, ‘Transverse instability of magnetized electron holes’. Phys. Rev. Lett. 85, 94.

    Google Scholar 

  • Musher, S. L. and B. I. Sturman: 1975, ‘On the collapse of plasma waves near the lower hybrid resonance’. JETP Lett. Engl. Trans. 22, 265.

    Google Scholar 

  • Nagano, I., E. Yamamoto, K. Hashimoto, I. Kimura, H. Yamagishi, and H. Fukunishi: 1988, ‘Full wave analysis of altitude profiles of auroral hiss observed by antarctic rocket’. Geomagn. Geoelectr. 40, 905.

    Google Scholar 

  • Nelms, G. L. and G. E. K. Lockwood: 1967, ‘Early results from the topside sounder in the Alouette II satellite’. In: R. L. Smith-Rose (ed.): Space Research VII. Amsterdam: North-Holland, pp. 604.

    Google Scholar 

  • Nesmyanovich, A. T., S. I. Musatenko, V. A. Kravchenko, and V. V. Chmil': 1976, ‘Radio burst from outer space near the Earth in the meter wavelength range’. Radiophys. Quantum Electron. 19, 1101.

    Google Scholar 

  • Newman, D., R. M. Winglee, and M. V. Goldman: 1988, ‘Theory and simulation of electromagnetic beam modes and whistlers’. Phys. Fluids 31, 1515.

    Google Scholar 

  • Newman, D. L. and M. V. Goldman: 2001, ‘Instabilities of phase space tubes’. Phys. Scr. T89, 76.

    Google Scholar 

  • Newman, D. L., M. V. Goldman, M. Spector, and F. Perez: 2001, ‘Dynamics and instability of electron phase-space holes’. Phys. Rev. Lett. 86, 1239.

    Google Scholar 

  • Nishikawa, K.-I., O. Buneman, and T. Neubert: 1994, ‘New aspects of whistler waves driven by an electron beam studied by a 3D electromagnetic code’. Geophys. Res. Lett. 21, 1019.

    Google Scholar 

  • Nishimuta, I.,M. Ose, and K. Sinno: 1969, ‘Abnormal enhancements of HF noise intensity at Syowa Station, Antarctica’. Geomagn. Geoelectr. 21, 697.

    Google Scholar 

  • Nishino, M. and Y. Tanaka: 1987, ‘Observations of auroral LHR noise by the sounding rocket S-310JA-6’. Planet. Space Sci. 35, 127.

    Google Scholar 

  • Nishino, M., Y. Tanaka, A. Iwai, and T. Hirasawa: 1981, ‘A new direction finding technique for auroral VLF hiss based on the measurement of time differences of arrival at three spaced observing points’. Planet. Space Sci. 29, 365.

    Google Scholar 

  • Noda, A. and T. Tamao: 1976, ‘The model dependence of differential power spectra of incoherent Cherenkov radiation’. J. Geophys. Res. 81, 287.

    Google Scholar 

  • Norqvist, P., M. André, and M. Tyrland: 1998, ‘A statistical study of ion energization mechanisms in the auroral region’. J. Geophys. Res. 103, 23459.

    Google Scholar 

  • Ochs, G. R., D. T. Farley, K. L. Bowles, and P. Bandyopadhay: 1963, ‘Observations of synchrotron radio noise at the magnetic equator following the high-altitude nuclear explosion of July 9, 1962’. J. Geophys. Res. 68, 701.

    Google Scholar 

  • Oguti, T.: 1975, ‘Hiss emitting auroral activity’. J. Atmos. Terr. Phys. 37, 761.

    Google Scholar 

  • Okada, T. and A. Iwai: 1988, Natural VLF radio waves. Letchworth,Hertfordshire, England: Research Studies Press, Ltd.

    Google Scholar 

  • Omelchenko, Y. A., V. D. Shapiro, V. I. Shevchenko, M. Ashour-Abdalla, and D. Schriver: 1994, ‘Modified lower hybrid fan instability exited by precipitating auroral electrons’. J. Geophys. Res. 99, 5965.

    Google Scholar 

  • Omidi, N. and C. S. Wu: 1985, ‘The effect of background plasma density on the growth of ordinary and Z mode emissions in the auroral zone’. J. Geophys. Res. 90, 6641.

    Google Scholar 

  • Omidi, N., C. S. Wu, and D. A. Gurnett: 1984, ‘Generation of auroral kilometric and Z mode radiation by the cyclotron maser mechanism’. J. Geophys. Res. 89, 883.

    Google Scholar 

  • Omura, Y., H. Matsumoto, and H. Kojima: 1996, ‘Electron beam instability as generation mechanism of electrostatic solitary waves in the magnetotail’. J. Geophys. Res. 101, 2685.

    Google Scholar 

  • Ondoh, T.: 1990, ‘Broad-band auroral VLF Hiss and inverted-V electron precipitation in the polar magnetosphere’. J. Atmos. Terr. Phys. 52, 385.

    Google Scholar 

  • Ondoh, T.: 1991, ‘Polar hiss observed by ISIS satellites’. In: J. Kan, T. Potemra, S. Kokubun, and T. Iijima (eds.): Magnetospheric Substorms, No. 64 in Geophysical Monograph.Washington, D.C., American Geophys. Union.

    Google Scholar 

  • Oppenheim, M., D. L. Newman, and M. V. Goldman: 1999, ‘Evolution of electron phasespace holes in a 2D magnetized plasma’. Phys. Rev. Lett. 83, 2344.

    Google Scholar 

  • Osipov, N. K. and Y. G. Shevelev: 1973, ‘Two types of radio emissions of the auroral ionosphere and ionospheric disturbances’. Geomagn. Aeron. 13, 573.

    Google Scholar 

  • Oya, H.: 1970, ‘Sequence of diffuse plasma resonances observed on Alouette 2 ionograms’. J. Geophys. Res. 75, 4279.

    Google Scholar 

  • Oya, H.: 1972, ‘Turbulence of electrostatic cyclotron harmonic waves observed by OGO-5’. J. Geophys. Res. 77, 3483.

    Google Scholar 

  • Oya, H. and A. Morioka: 1983, ‘Observational evidence of Z and L-O mode waves as the origin of auroral kilometric radiation from the Jikiken (EXOS-B) satellite’. J. Geophys. Res. 88, 6189.

    Google Scholar 

  • Oya, H., A. Morioka, and T. Obara: 1985, ‘Leaked AKR and terrestrial hectometric radiations discovered by the plasma wave and planetary plasma sounder experiments on board the Ohzora (EXOS-C) satellite-instrumentation and observation results of plasma wave phenomena’. Geomagn. Geoelectr. 37, 237.

    Google Scholar 

  • Palmadesso, P., T. P. Coffey, S. L. Ossakow, and K. Papadopoulos: 1976, ‘Generation of terrestrial kilometric radiation be a beam driven electromagnetic instability’. J. Geophys. Res. 81, 1762.

    Google Scholar 

  • Parthasarathy, R. and F. T. Berkey: 1964, ‘Radio noise from the auroral electrons-I’. J. Atmos. Terr. Phys. 26, 199.

    Google Scholar 

  • Pecseli, H. L., K. Iranpour, O. Holter, B. Lybekk, J. Holtet, J. Trulsen, A. Eriksson, and B. Holback: 1996, ‘Lower hybrid wave cavities detected by the FREJA satellite’. J. Geophys. Res. 101, 5299.

    Google Scholar 

  • Pecseli, H. L., B. Lybekk, J. Trulsen, and A. Eriksson: 1997, ‘Lower hybrid wave cavities detected by instrumented spacecrafts’. Plasma Phys. Control. Fusion 39, A227.

    Google Scholar 

  • Peng, S. Y., C. S. Wang, and J. S. Kim: 1974, ‘Pitch angle effect on sychrotron radiation from electrons in the Earth's magnetosphere’. J. Geophys. Res. 79, 138.

    Google Scholar 

  • Persoon, A. M. and D. A. Gurnett: 1989, ‘The high-resolution frequency spectrum of Z mode radiation’. EOS Trans. Amer. Geophys. Union 70, 434.

    Google Scholar 

  • Persoon, A. M., D. A. Gurnett, and S. D. Shawhan: 1983, ‘Polar cap electron densities from DE 1 plasma wave observations’. J. Geophys. Res. 88, 10123.

    Google Scholar 

  • Peterson, A. M. and G. L. Hower: 1963, ‘Sychrotron radiation from high-energy electrons’. J. Geophys. Res. 68, 723.

    Google Scholar 

  • Peterson, A. M. and G. L. Hower: 1966, ‘Theoretical model of synchrotron radiation and comparison with observations’. In: B. M. McCormac (ed.): Radiation Trapped in the Earth's Magnetic Field. Dordrecht, Holland: Reidel, p. 718.

    Google Scholar 

  • Pfaff, R. F. and P. A. Marionni: 1998, ‘Multiple-baseline spaced receivers’. In: R. F. Pfaff, J. E. Borovsky, and D. T. Young (eds.): Measurement Techniques in Space Plasmas: Fields, Vol. 103. Washington, D.C.: American Geophys. Union, p. 161.

    Google Scholar 

  • Pincon, J. L., P. M. Kintner, P. W. Schuck, and C. E. Seyler: 1997, ‘Observation and analysis of lower hybrid solitary structures as rotating eigenmodes’. J. Geophys. Res. 102, 17283.

    Google Scholar 

  • Pottelette, R., R. E. Ergun, R. A. Treumann, M. Berthomier, C.W. Carlson, J. P. McFadden, and I. Roth: 1999, ‘Modulated electron-acousticwaves in auroral density cavities: FAST observations’. Geophys. Res. Lett. 26, 2629.

    Google Scholar 

  • Pottelette, R., M. Malingre, A. Bahnsen, L. Eliasson, K. Stasiewicz, R. E. Erlandson, and G. E. Marklund: 1988, ‘VIKING observations of burst of intense broadband noise in the source regions of auroral kilometric radiation’. Annales Geophys. 6, 573.

    Google Scholar 

  • Pottelette, R., M. Malingre, N. Dubouloz, B. Aparicio, R. Lundin, G. Holmgren, and G. Marklund: 1990, ‘High-frequencywaves in the cusp/cleft regions’. J. Geophys. Res. 95, 5957.

    Google Scholar 

  • Pottelette, R., R. A. Treumann, and M. Berthomier: 2001, ‘Auroral plasma turbulence and the cause of auroral kilometric radiation fine structure’. J. Geophys. Res. 106, 8465.

    Google Scholar 

  • Rao, M., S. K. Dikshit, and B. A. P. Tantry: 1973, ‘Incoherent Cerenkov radiation in the magnetosphere and the ground observations of VLF hiss’. J. Geophys. Res. 78, 191.

    Google Scholar 

  • Reber, G. and G. R. A. Ellis: 1956, ‘Cosmic radio frequency radiation near one megacycle’. J. Geophys. Res. 61, 1.

    Google Scholar 

  • Renuka, G. and K. S. Viswanathan: 1978, ‘Instabilities of the whistler mode in the magnetosphere’. Indian J. Radio & Space Phys. 7, 248.

    Google Scholar 

  • Robinson, P. A.: 1999, ‘Nonlinear lower hybrid structures in auroral plasmas: Comparison of theory with observations’. Adv. Space Res. 23, 1679.

    Google Scholar 

  • Robinson, P. A. and A. Melatos: 1996, ‘Is there lower hybrid wave collapse at auroral latitudes?: Theory versus observations’. J. Geophys. Res. 101, 21545.

    Google Scholar 

  • Rosenberg, S. and W. Gekelman: 1998, ‘Electric field measurements of directly converted lower hybrid waves at a density stiration’. Geophys. Res. Lett. 25, 865.

    Google Scholar 

  • Rosenberg, T. J.: 1968, ‘Correlated bursts of VLF hiss, auroral light and X-rays’. Planet. Space Sci. 100, 1419.

    Google Scholar 

  • Rosenberg, T. J., S. Singh, C. S. Wu, J. LaBelle, R. A. Treumann, U. S. Inan, and L. J. Lanzerotti: 1995, ‘Coincident bursts of auroral kilometric radiation and VLF emissions associatet with a type III solar radio noise event’. J. Geophys. Res. 100, 281.

    Google Scholar 

  • Roth, I. and M. K. Hudson: 1986, ‘Simulations of electron beam exited modes in the highaltitude magnetosphere’. J. Geophys. Res. 91, 8001.

    Google Scholar 

  • Roth, I., M. K. Hudson, and M. Temerin: 1989, ‘Generation models of electron conics’. J. Geophys. Res. 94, 10095.

    Google Scholar 

  • Rothkaehl, H.: 1999, ‘HF plasma emission detected in the cusp region at ionospheric altitude’. Adv. Space Res. 23-10, 1769.

    Google Scholar 

  • Rumyantsev, S. A. and I. N. Bardeev: 1989, ‘Ray paths of whistler mode waves near the plasma resonance in the topside ionosphere’. Geomagn. Aeron. 29, 150.

    Google Scholar 

  • Santolík, O., F. Lefeuvre, M. Parrot, and J. L. Rauch: 2001, ‘Complete wave-vector directions of electromagnetic emissions: Application to INTERBALL-2 measurements in the nightside auroral zone’. J. Geophys. Res. 106, 13191.

    Google Scholar 

  • Sato, N., M. Ayukawa, and H. Fukunishi: 1980, ‘Conjugacy of ELF-VLF emissions near L = 6’. J. Atmos. Terr. Phys. 42, 911.

    Google Scholar 

  • Sato, N. and K. Hayashi: 1974, ‘Band-limited ELF emission burst (auroral roar)’. J. Geophys. Res. 79, 3531.

    Google Scholar 

  • Sato, N., S. Kokubun, and T. Saemundsson: 1987, ‘Geomagnetic conjugacy of 30-kHz band auroral hiss emissions observed at L = 6.1’. J. Geophys. Res. 92, 6159.

    Google Scholar 

  • Sazhin, S. S.: 1992, Whistler Mode Waves in a Hot Plasma. Cambridge: Cambridge University Press.

    Google Scholar 

  • Sazhin, S. S., K. Bullough, and M. Hayakawa: 1993, ‘Auroral hiss: A review’. Planet. Space Sci. 41, 153.

    Google Scholar 

  • Schamel, H.: 1972, ‘Stationary solitary snoidal and sinusoidal ion acoustic waves’. Plasma Phys. 14, 905.

    Google Scholar 

  • Schamel, H.: 1982a, ‘Stability of electron vortex structures in phase space’.Phys. Rev. Lett. 48, 481.

    Google Scholar 

  • Schamel, H.: 1982b, ‘Kinetic theory of phase space vortices and double layers’. Phys. Scr. T2/1, 228.

    Google Scholar 

  • Schamel, H.: 2000, ‘Hole equilibria in Vlasov-Poisson systems: A challenge to wave theories of ideal plasmas’. Phys. Plasmas 7, 4831.

    Google Scholar 

  • Schriver, D., M. Ashour-Abdalla, V. Sotnikov, P. Hellinger, V. Fiala, R. Bingham, and A. Mangeney: 2000, ‘Excitation of electron acoustic waves near the electron plasma frequency and at twice the plasma frequency’. J. Geophys. Res. 105, 12919.

    Google Scholar 

  • Schuck, P. W., C. E. Seyler, J. L. Pincon, J. W. Bonnell, and P. M. Kintner: 1998, ‘Theory, simulation, and observation of discrete eigenmodus associated with lower hybrid solitary structures’. J. Geophys. Res. 103, 6935.

    Google Scholar 

  • Seed, T. J.: 1958, ‘VHF observations on the aurora australis’. J. Geophys. Res. 63, 517.

    Google Scholar 

  • Seyler, C. E.: 1994, ‘Lower hybrid wave phenomena associated with density depletions’. J. Geophys. Res. 59, 19513.

    Google Scholar 

  • Shapiro, V. D., V. I. Shevchenko, G. I. Solov'ev, B. P. Kalinin, R. Bingham, R. Z. Sagdeev, M. Ashour-Abdalla, J. Dawson, and J. J. Su: 1993, ‘Wave collapse at the lower hybrid resonance’. Phys. Fluids 5, 3148.

    Google Scholar 

  • Shaw, R. R. and D. A. Gurnett: 1975, ‘Electrostatic noise bands associated with the electron gyrofrequency and plasma frequency in the outer magnetosphere’. J. Geophys. Res. 80, 4271.

    Google Scholar 

  • Shawhan, D.: 1979, ‘Magnetospheric plasma waves’. In: L. Lanzerotti, C. F. Kennel, and E. N. Parker (eds.): Solar System Plasma Physics, Vol. 3. Amsterdam, North-Holland, p. 211.

    Google Scholar 

  • Shepherd, S. G.: 1998, ‘Auroral ionospheric electron gyroharmonic radio emissions: Observation and theory’. Ph.D. thesis, Dartmouth College, Hanover, New Hampshire.

    Google Scholar 

  • Shepherd, S. G., J. LaBelle, C. W. Carlson, and G. Rostoker: 1999, ‘Latitudinal dynamics of auroral roar emissions’. J. Geophys. Res. 104, 17217.

    Google Scholar 

  • Shepherd, S. G., J. LaBelle, R. A. Doe, M. McCready, and A. T. Weatherwax: 1998a, ‘Ionospheric structure and the generation of auroral roar’. J. Geophys. Res. 103, 29253.

    Google Scholar 

  • Shepherd, S. G., J. LaBelle, and M. L. Trimpi: 1997, ‘The polarization of auroral radio emissions’. Geophys. Res. Lett. 24, 3161.

    Google Scholar 

  • Shepherd, S. G., J. LaBelle, and M. L. Trimpi: 1998b, ‘Further investigation of auroral roar fine structure’. J. Geophys. Res. 103, 2219.

    Google Scholar 

  • Shutte, N., I. Prutensky, S. Pulinets, Z. Klos, and H. Rothkaehl: 1997, ‘The chargedparticle fluxes at auroral and polar latitudes and related low-frequency auroral kilometric radiation-type and high-frequency wideband emission’. J. Geophys. Res. 102, 2105.

    Google Scholar 

  • Singh, D. P. and B. Singh: 1978, ‘Propagation characteristics of ground observed VLF waves after emerging from the ducts in the ionosphere’. Annales Geophys. 34, 113.

    Google Scholar 

  • Singh, N.: 1994, ‘Pondermotive versus mirror force in creation of the filamentary cavities in auroral plasma’. Geophys. Res. Lett. 21, 257.

    Google Scholar 

  • Singh, N., S. M. Loo, and B. E. Wells: 2001, ‘Electron hole as an antenna radiating plasma waves’. Geophys. Res. Lett. 28, 1371.

    Google Scholar 

  • Singh, R. P.: 1972, ‘Amplification of Signal by Cerenkov Resonance Interaction’. Planet. Space Sci. 20, 2073.

    Google Scholar 

  • Singh, S. V. and G. S. Lakhina: 2000, ‘Generation of electron-acoustic waves in the magnetosphere’. Planet. Space Sci. 49, 107.

    Google Scholar 

  • Siren, J. C.: 1972, ‘Dispersive auroral hiss’. Nature 238, 118.

    Google Scholar 

  • Siren, J. C.: 1975, ‘Fast Hisslers in Substorms’. J. Geophys. Res. 80, 93.

    Google Scholar 

  • Smith, M. S.: 1973, ‘Numerical solution of the “Ellis window” problem’. Nature Phys. Sci. 243, 29.

    Google Scholar 

  • Smith, R. L.: 1969, ‘VLF observations of auroral beams as sources of a class of emissions’. Nature 224, 351.

    Google Scholar 

  • Smith, R. L., R. A. Helliwell, and I. Yabroff: 1960, ‘A theory of trapping of whistlers in field-aligned columns of enhanced ionization’. J. Geophys. Res. 65, 815.

    Google Scholar 

  • Sonwalkar, V. S.: 1995, ‘Magnetospheric LF, VLF, and ELF waves’. In: H. Volland (ed.): Handbook of Atmospheric Electricity. Boca Raton, Florida: CRC Press, pp. 407.

    Google Scholar 

  • Sonwalkar, V. S., T. S. Bell, R. A. Helliwell, and U. S. Inan: 1984, ‘Direct multiple path propagation: A fundamental property of nonducted VLF waves in the magnetosphere’. J. Geophys. Res. 89, 2823.

    Google Scholar 

  • Sonwalkar, V. S. and J. Harikumar: 2000, ‘An explanation of ground observations of auroral hiss: Role of density depletions and meter scale irregularities’. J. Geophys. Res. 105, 18867.

    Google Scholar 

  • Sotnikov, V. I., D. Schriver, M. Ashour-Abdalla, J. Ernstmeyer, and N. Myers: 1995, ‘Excitation of electron acoustic waves by a gyrating electron beam’. J. Geophys. Res. 100, 19765.

    Google Scholar 

  • Sotnikov, V. I., D. Schriver, M. Ashour-Abdalla, and J. LaBelle: 1996, ‘Generation of auroral radio waves by a gyrating electron beam’. EOS Trans. Amer. Geophys. Union 77, F-544.

    Google Scholar 

  • Srivastava, R. N.: 1974, ‘Propagation of VLF emissions in the magnetosphere and the ionosphere’. Planet. Space Sci. 22, 1545.

    Google Scholar 

  • Srivastava, R. N.: 1976, ‘VLF hiss, visual aurora and the geomagnetic activity’. Planet. Space Sci. 24, 375.

    Google Scholar 

  • Stasiewicz, K., B. Holback, V. Krasnoselskikh, M. Boehm, R. Boström, and P. M. Kintner: 1996, ‘Parametric instabilities of Langmuir waves observed by Freja’. J. Geophys. Res. 101, 21515.

    Google Scholar 

  • Stenflo, L. and P. K. Shukla: 1992, ‘Generation of radiation by upper-hybrid waves in non-uniform plasmas’. Planet. Space Sci. 40, 473.

    Google Scholar 

  • Stix, T. H.: 1992, Waves in Plasmas. New York: American Institute of Physics.

    Google Scholar 

  • Strangeway, R. J., L. Kepko, R. C. Elphic, C. W. Carlson, R. E. Ergun, J. P. McFadden, W. J. Peria, G. T. Delory, C. C. Chaston, C. A. Temerin, M. Cattell, E. Mobius, L. M. Kistler, and D. M. Klumpar: 1998, ‘FAST observations of VLF waves in the auroral zone: Evidence of very low plasma densities’. Geophys. Res. Lett. 25, 2065.

    Google Scholar 

  • Swift, D.: 1988, ‘A numerical model for auroral precipitation’. J. Geophys. Res. 93, 9815.

    Google Scholar 

  • Swift, D. W. and D. J. Gorney: 1989, ‘Production of very energetic electrons in discrete aurora’. J. Geophys. Res. 94, 2696.

    Google Scholar 

  • Swift, D. W. and J. R. Kan: 1975, ‘A theory of auroral hiss and implications on the origin of auroral electrons’. J. Geophys. Res. 80, 985.

    Google Scholar 

  • Tanaka, Y., M. Hayakawa, and M. Nishino: 1976, ‘Study of auroral VLF hiss observed at Syowa Station, Antarctica’. Mem. Nat. Int. Polar Res. 13, 1.

    Google Scholar 

  • Tanaka, Y. and M. Nishino: 1988, ‘The propagation of auroral hiss observed on the ground as deduced from direction-finding measurements’. Planet. Space Sci. 36, 259.

    Google Scholar 

  • Taylor, W. W. L. and S. D. Shawhan: 1974, ‘A test of incoherent Cerenkov radiation for VLF hiss and other magnetospheric emissions’. J. Geophys. Res. 79, 105.

    Google Scholar 

  • Temerin, M.: 1979, ‘A comment on the source region of VLF saucers’. J. Geophys. Res. 84, 6691.

    Google Scholar 

  • Temerin, M., C. Cattell, R. Lysak, M. Hudson, R. B. Torbert, F. S. Mozer, R. D. Sharp, and P. M. Kintner: 1981, ‘The small-scale structure of electrostatic shocks’. J. Geophys. Res. 86, 11278.

    Google Scholar 

  • Temerin, M. and D. Cravens: 1990, ‘Production of electron conics by stochastic acceleration parallel to the magnetic field’. J. Geophys. Res. 95, 4285.

    Google Scholar 

  • Temerin, M. and M. C. Kelley: 1980, ‘Rocket-borne wave measurements in the dayside auroral oval’. J. Geophys. Res. 85, 2915.

    Google Scholar 

  • Temerin, M., J. McFadden, M. Boehm, C. W. Carlson, and W. Lotko: 1986, ‘Production of flickering auroral and field aligned electron flux by electromagnetic ion cyclotron waves’. J. Geophys. Res. 91, 5769.

    Google Scholar 

  • Titova, E. E., V. I. Di, V. E. Yurov, O. M. Raspovov, V. Y. Trakhtengertz, F. Jiricek, and P. Triska: 1984, ‘Interaction between VLF waves and the turbulent ionosphere’. Geophys. Res. Lett. 11, 323.

    Google Scholar 

  • Tokar, R. L. and S. P. Gary: 1984, ‘Electrostatic hiss and the beam driven electron acoustic instability in the dayside polar cusp’. Geophys. Res. Lett. 11, 1180.

    Google Scholar 

  • Tokarev, Y.V., V. V. Bytchkov, L. Stenflo, and V. V. Bychkov: 2001, ‘Terrestrial radio noise at frequencies below the ionospheric cutoff’. J. Atmos. Solar Terr. Phys. 56, submitted.

  • Treumann, R. A. and J. LaBelle: 2002, ‘Auroral radio emissions, 2. Auroral kilometric radiation’. Space Sci. Rev. 101, to be submitted.

  • Trulsen, J.: 1971, ‘Cyclotron radiation in hot magnetosplasmas’. Plasma Phys. 6, 367.

    Google Scholar 

  • Tsunoda, R. T.: 1988, ‘High-latitude F-region irregularities: A review and synthesis’. Rev. Geophys. 26, 719.

    Google Scholar 

  • Turikov, V. A.: 1994, ‘Electron phase space holes as localized BGK solutions’. Phys. Scr. 30, 73.

    Google Scholar 

  • Ungstrup, E.: 1966, ‘Assiociation between VLF emissions and flickering aurora’. J. Geophys. Res. 71, 2395.

    Google Scholar 

  • Ungstrup, E.: 1971, ‘Rocket observation of VLF hiss in aurora’. Planet. Space Sci. 19, 1475.

    Google Scholar 

  • Ungstrup, I. M. and D. L. Carpenter: 1974, ‘Hisslers: Quasi-periodic (t = 2 s) VLF noise forms at auroral latitudes’. J. Geophys. Res. 79, 5196.

    Google Scholar 

  • Vago, J., P. M. Kintner, S. W. Chesney, R. Arnoldy, K. L. Lynch, T. Moore, and C. J. Pollock: 1992, ‘Transverse ion acceleration by localized lower hybrid waves in the topside auroral ionosphere’. J. Geophys. Res. 97, 16935.

    Google Scholar 

  • Vall, A. A. and V. V. Klimenko: 1987, ‘Bursts of decametric radio noise during the injection of auroral electrons into the ionosphere’. Geomagn. Aeron. 27, 123.

    Google Scholar 

  • Valladares, C. E., M. C. Kelley, and J. F. Vickrey: 1988, ‘Plasma line observations in the auroral oval’. J. Geophys. Res. 93, 1997.

    Google Scholar 

  • Vesecky, J. F.: 1969a, ‘Radio-frequency synchrotron radiation from inner belt trapped electrons’. J. Geophys. Res. 74, 3628.

    Google Scholar 

  • Vesecky, J. F.: 1969b, ‘Radio-frequency synchrotron radiation from trapped electrons above the auroral zones’. Planet. Space Sci. 17, 389.

    Google Scholar 

  • Vetoulis, G. and M. Oppenheim: 2001, ‘Electrostatic mode excitation in electron holes due to wave bounce resonances’. Phys. Rev. Lett. 86, 1235.

    Google Scholar 

  • Vlasov, V. G.: 1989, ‘Plasma mechanism for the auroral wave radiation’. Plasma Phys. 15, 1495.

    Google Scholar 

  • Vlasov, V. G., V. V. Klimenko, G. K. Matafonov, and A. V. Tashchilin: 1992, ‘Collective heating and radiation dynamics of the auroral ionospheric F2-region’. J. Atmos. Terr. Phys. 54, 995.

    Google Scholar 

  • Wagner, J. S., L. C. Lee, C. S. Wu, and T. Tajima: 1984, ‘A simulation study of the loss cone driven cyclotronmaser applied to auroral kilometric radiation’. Radio Sci. 19, 509.

    Google Scholar 

  • Wang, C. S., Y. H. Lee, and J. S. Kim: 1971, ‘Synchrotron radiation from auroral electrons’. Radio Sci. 6, 775.

    Google Scholar 

  • Watanabe, T., T. Ondoh, Y. Nakamura, and T. Murakami: 1979, ‘Attenuation band and electric field of VLF saucers’. Antarct. Res. 64, 159.

    Google Scholar 

  • Watanabe, T. and H. Oya: 1993, ‘Competing processes of electrostatic waves excited by auroral electron beams: Comparison of EXOS D observationswith computer simulations’. J. Geophys. Res. 98, 15621.

    Google Scholar 

  • Weatherwax, A. T., J. LaBelle, and M. L. Trimpi: 1994a, ‘A new type of auroral radio emission observed at medium frequencies(~1350-3700 kHz) using ground-based receivers’. Geophys. Res. Lett. 21, 2753.

    Google Scholar 

  • Weatherwax, A. T., J. LaBelle, M. L. Trimpi, and R. Brittain: 1993, ‘Ground-based observations of radio emissions near 2f ce and 3f ce in the auroral zone’. Geophys. Res. Lett. 20, 1447.

    Google Scholar 

  • Weatherwax, A. T., J. LaBelle, M. L. Trimpi, R. Brittain, and R. A. Treumann: 1994b, ‘Ground based observations of MF/HF radio noise in the auroral zone’. J. Geophys. Res. 99, 2109.

    Google Scholar 

  • Weatherwax, A. T., J. LaBelle, M. L. Trimpi, R. A. Treumann, J. Minow, and C. Deehr: 1995, ‘Statistical and case studies of radio emissions observed near 2f ce and 3f ce in the auroral zone’. J. Geophys. Res. 100, 7745.

    Google Scholar 

  • Weatherwax, A. T., G. Van Bavel, T. J. Rosenberg, P. H. Yoon, and J. LaBelle: 1998, ‘The correlation of auroral x-ray image data with ionospheric absorption and VLF-MF radio emissions’. EOS Trans. Amer. Geophys. Union 79, S-247.

    Google Scholar 

  • Weatherwax, A. T., P. H. Yoon, and J. LaBelle: 2002, ‘Interpreting topside observations of MF/HF radio emissions: Unstable wave modes and possibilities to passively diagnose ionospheric densities’. J. Geophys. Res. 10, 1029/2001JA00315.

    Google Scholar 

  • White, S. M.: 1985, ‘On damping of auroral Z mode waves’. J. Geophys. Res. 90, 7471.

    Google Scholar 

  • Willes, A. J., S. D. Bale, and Z. Kuncic: 1998, ‘A Z-mode electron cyclotron maser model for bottomside ionospheric harmonic radio emissions’. J. Geophys. Res. 103, 7017.

    Google Scholar 

  • Winglee, R. M.: 1985a, ‘Effects of a finite plasma temperature on electron cyclotron maser emission’. Astrophys. J. 291, 160.

    Google Scholar 

  • Winglee, R. M.: 1985b, ‘Fundamental and harmonic electron cyclotron maser emission’. J. Geophys. Res. 90, 9663.

    Google Scholar 

  • Winglee, R. M., J. D. Menietti, and H. K. Wong: 1992, ‘Numerical simulations of bursty radio emissions from planetary magnetospheres’. J. Geophys. Res. 97, 17131.

    Google Scholar 

  • Wong, H. K. and M. L. Goldstein: 1990, ‘A mechanism for bursty radio emission in planetary magnetospheres’. Geophys. Res. Lett. 17, 2229.

    Google Scholar 

  • Wong, H. K. and M. L. Goldstein: 1994, ‘Electron cyclotronwave generation by relativistic electrons’. J. Geophys. Res. 99, 235.

    Google Scholar 

  • Wong, H. K., J. D. Menietti, C. S. Lin, and J. L. Burch: 1988, ‘Generation of electron conical distributions by upper hybrid waves in the Earth's polar region’. J. Geophys. Res. 93, 10025.

    Google Scholar 

  • Wu, C. S., D. Dillenburg, L. F. Ziebell, and H. P. Freund: 1983, ‘Excitation of whistler waves by reflected auroral electrons’. Planet. Space Sci. 31, 499.

    Google Scholar 

  • Wu, C. S. and L. C. Lee: 1979, ‘A theory of terrestrial kilometric radiation’. Astrophys. J. 230, 621.

    Google Scholar 

  • Wu, C. S., P. H. Yoon, and H. P. Freund: 1989, ‘A theory of electron cyclotron waves generated along auroral field lines observed by ground facilities’. Geophys. Res. Lett. 16, 1461.

    Google Scholar 

  • Yamamoto, T.: 1979, ‘On the amplification of VLF hiss’. Planet. Space Sci. 27, 273.

    Google Scholar 

  • Yau, A.W., B. A. Whalen, and A. G. McNamara: 1983, ‘Particle and wave observations of low-altitude ionospheric ion acceleration events’. J. Geophys. Res. 88, 341.

    Google Scholar 

  • Yermakova, Y. N. and V. Y. Trakhtengerts: 1981, ‘Transitional mechanism of HF and VHF radio emission in the polar ionosphere’. Geomagn. Aeron. 21, 56.

    Google Scholar 

  • Yerukhimova, T. L., E. V. Suvorov, and V. Y. Trakhtengerts: 1990, ‘High frequency electromagnetic radiation of the auroral ionosphere’. Geomagn. Aeron. 30, 57.

    Google Scholar 

  • Yoon, P. H., A. T. Weatherwax, and J. LaBelle: 2000, ‘Discrete electrostatic eigenmodes associated with ionospheric density structure: Generation of auroral roar fine frequency structure’. J. Geophys. Res. 105, 27589.

    Google Scholar 

  • Yoon, P. H., A. T. Weatherwax, and T. J. Rosenberg: 1996, ‘Lower ionospheric cyclotron maser theory: A possible source of 2fce and 3fce auroral radio emissions’. J. Geophys. Res. 101, 27015.

    Google Scholar 

  • Yoon, P. H., A. T. Weatherwax, and T. J. Rosenberg: 1998a, ‘On the generation of auroral radio emissions at harmonics of the lower ionospheric electron cyclotron frequency: X, O and Z Mode maser calculations’. J. Geophys. Res. 103, 4071.

    Google Scholar 

  • Yoon, P. H., A. T. Weatherwax, T. J. Rosenberg, J. LaBelle, and S. G. Shepherd: 1998b, ‘Propagation of medium frequency (1-4MHz) auroral radio waves to the ground via the Z-Mode radio window’. J. Geophys. Res. 103, 29267.

    Google Scholar 

  • Yoshino, T., T. Ozaki, and H. Fukunishi: 1981, ‘Occurrence distributions of VLF hiss and saucer emissions over the southern polar region’. J. Geophys. Res. 86, 846.

    Google Scholar 

  • Ziebell, L. F., C. S. Wu, and P. H. Yoon: 1991, ‘Kilometric radio waves generated along auroral field lines observed by ground facilities: A theoretical model’. J. Geophys. Res. 96, 1495.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaBelle, J., Treumann, R.A. Auroral Radio Emissions, 1. Hisses, Roars, and Bursts. Space Science Reviews 101, 295–440 (2002). https://doi.org/10.1023/A:1020850022070

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020850022070

Keywords

Navigation