Skip to main content

Synthesis and Digestibility Inhibition of Diarylheptanoids: Structure–Activity Relationship

Abstract

(±)-5-Hydroxy-1,7-bis-(4′-hydroxyphenyl)-3-heptanone (2a), (±)-5-hydroxyl-1-(4′-hydroxyphenyl)-7-phenyl-3-heptanone (2b), (±)-5-hydroxy-7-(4′-hydroxyphenyl)-1-phenyl-3-heptanone (2c), and (±)-5-hydroxy-1,7-bis-(phenyl)-3-heptanone (2d) have been synthesized to study the structure–activity relationship regarding digestibility inhibition in vitro in cow rumen fluid. The activities were compared with the activity of chiral (S)-2a and its glucoside platyphylloside (1), isolated from Betula pendula. Compound 2a was slightly less active, 2b and 2c were more active, and 2d was less active than (S)-2a and platyphylloside.

This is a preview of subscription content, access via your institution.

REFERENCES

  • Asakawa, Y. 1970. A new ketol, 1,7-diphenyl-5-hydroxy-3-heptanone, and trans-stilbene from Alnus firma Sieb. et Zucc. (Betulaceae). Bull Chem. Soc. Jpn. 43:575–575.

    Google Scholar 

  • Bernady, K. F., Brawner, F., Poletto, J. F., and Weiss, M. J. 1979. Prostaglandins and congeners. 20. Synthesis of prostaglandins via conjugate addition of lithium trans-1-alkenyltrialkylalanate reagents. A novel reagent for conjugate 1,4-additions. J. Org. Chem. 44:1438–1447.

    Google Scholar 

  • Claeson, P., Pongprayoon, U., Sematong, T., Tuchinda, P., Reutrakul, V., Soontornsaratune, P., and Taylor, W. C. 1996. Non-phenolic linear diarylheptanoids from Curcuma xanthorrihza. A novel type of topical antiinflammatory agents. Structure-activity relationship. Planta Med. 62:236–240.

    Google Scholar 

  • Corey, E. J., and Suggs, J. W. 1975. Pyridinium chlorochromate. An effective reagent for oxidation of primary and secondary alcohols to carbonyl compounds. Tetrahedron Lett. 31:2647–2650.

    Google Scholar 

  • Kadota, S., Prassin, J. K., Li, J. X., Basnet, P., Dong, H., Tani, T., and Namba, T. 1996. Blepharocalyxins A and B, novel diarylheptanoids from Alpinia blepharocalyx, and their inhibitory effect on NO formation in murine macrophages. Tetrahedron Lett. 37:7283–7286.

    Google Scholar 

  • Kato, N., Hamada, Y., and Shiori, T. 1984. New methods and reagents in organic synthesis. 47. A general, efficient, and convenient synthesis of diarylheptanoids. Chem. Pharm. Bull. 32:3323–3326.

    Google Scholar 

  • Kikuzaki, H., and Nakatani, N. 1996. Cyclic diarylheptanoids from rhizomes of Zingiber officinale. Phytochemistry 43:273–277.

    Google Scholar 

  • Kiuchi, F., Iwakami, S., Shibuya, M., Hanaoka, F., and Sankawa, U. 1992. Inhibition of prostaglandins and leukotriene biosynthesis by gingerols and diarylheptanoids. Chem. Pharm. Bull. 40:387–391.

    Google Scholar 

  • Lindgren, E. 1979. The Nutritional Value of Roughages Determined In Vivo and by Laboratory Methods. Swedish University of Agricultural Sciences, Department of Animal Nutrition and Management, Report 45, Uppsala, 60 pp.

    Google Scholar 

  • Nagai, M., Matsuda, E., Inoue, T., Fujita, M., Chi, H. J., and Ando, T. 1990. Studies on the constituents of Aceraceae plants. VII. Diarylheptanoids from Acer griseum and Acer triflorum. Chem. Pharm. Bull. 38:1506–1508.

    Google Scholar 

  • Nagumo, S., Ishizawa, S., Nagai, M., and Inoue, T. 1996. Studies on the constituents of Aceraceae plants. XIII. Diarylheptanoids and other phenolics from Acer nikoense. Chem. Pharm. Bull. 44:1086–1089.

    Google Scholar 

  • Nomura, M., Tokoyorama, T., and Kubota, T. 1981. Biarylheptanoids and other constituents from wood of Alnus japonica. Phytochemistry 20:1097–1104.

    Google Scholar 

  • Ohta, S., Aoki, T., Hirata, T., and Suga, T. 1984. The structure of four diarylheptanoid glycosides from the female flower of Alnus serrulatoides. J. Chem. Soc. Perkin Trans. 1 8:1635–1642.

    Google Scholar 

  • Sasaya, T. 1985. Diarylheptanoids of Alnus hirsuta Turcz. (Belulaceae) Res. Bull. Coll. Exp. For. 42:191–205.

    Google Scholar 

  • Sasaya, T., and Izumiyama, K. 1974. Phenolic compounds from the wood of keyamahannoki Alnus hirsuta Turcz. (Betulaceae). Res. Bull. Coll. Exp. For. 31:23–50.

    Google Scholar 

  • Schuster, D. I., and Polowczyk, C. J. 1966. The photolysis of spiro[2.5]octa-4,7-dien-6-one. Radical fragmentation in the photochemistry of 2,5-cyclohexadienones. J. Am. Chem. Soc. 88:1722–1731.

    Google Scholar 

  • Smite, E., Lundgen, L. N., and Andersson, R. 1993. Arylbutanoid and diarylheptanoid glycosides from inner bark of Betula pendula. Phytochemistry 32:365–369.

    Google Scholar 

  • Sunnerheim-SjÖberg, K., and Knutsson, P-G. 1995. Platyphylloside: Metabolism and digestibility reduction in vitro. J. Chem. Ecol. 21:1339–1348.

    Google Scholar 

  • Sunnerheim-SjÖberg, K., Palo, R. T., Theander, O., and Knutsson, P.-G. 1988. Chemical defence in birch. Platyphylloside: A phenol from Betula pendula inhibiting digestibility. J. Chem. Ecol. 14:549–560.

    Google Scholar 

  • Terasawa, M., Koga, T., Okuyama, H., and Miyake, M. 1984. Phenolic compounds in living tissue of woods III. Mokuzai Gakkaishi 30:391–403.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bratt, K., Sunnerheim, K. Synthesis and Digestibility Inhibition of Diarylheptanoids: Structure–Activity Relationship. J Chem Ecol 25, 2703–2713 (1999). https://doi.org/10.1023/A:1020847423427

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020847423427

  • Platyphylloside
  • 5-hydroxy-3-platyphyllone
  • centrolobol
  • phenols
  • rumen fluid
  • birch bark
  • Betula pendula