Skip to main content
Log in

Effect of Euphorbia esula on Sheep Rumen Microbial Activity and Mass In Vitro

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Most large herbivores avoid the invasive weed leafy spurge (Euphorbia esula L.), possibly because the plant contains secondary compounds including terpenoids and condensed tannins. On the other hand, E. esula has high nutritive value based on traditional measures such as crude protein, fiber, and dry matter disappearance and is consumed by sheep and goats. Our objective was to determine if material from undefoliated and previously defoliated E. esula shoots, mixed in different proportions with grass hay, adversely affects sheep rumen microbial activity and mass in vitro. Material from undefoliated and previously defoliated E. esula shoots was collected in June, July, and August 1994 near Grass Range, Montana. Usually, increasing levels of E. esula leaves and flowers in the mixtures increased in vitro dry matter and neutral detergent fiber disappearances (DMD, NDFD), microbial gas production, and microbial purine concentrations. In contrast, increasing levels of E. esula stems in the mixtures decreased DMD, NDFD, microbial gas production, and microbial purine concentrations. Rumen microbial gas production and purine concentrations were higher with leaves from previously defoliated than undefoliated shoots. In contrast, rumen microbial gas production and DMD were lowest for stems from previously defoliated shoots; these responses correlated with high concentrations of condensed tannins in stems of previously defoliated plants. In early summer, the high nutritive value of E. esula appears to offset any potential negative effects associated with secondary compounds. In late summer, microbial response appears more sensitive to the presence of secondary compounds, when nutritive value of this plant is declining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • AOAC. 1984. Official Methods of Analysis, 14th ed. Association of Official Analytical Chemists. Washington, D.C.

    Google Scholar 

  • Adams, D. C., Pfister, J. A., Short, R. E., Cates, R. G., Knapp, B. W., and Wiedmeier, R. D. 1992. Pine needle effects on in vivo and in vitro digestibility of crested wheatgrass. J. Range Manage. 45:249-253.

    Google Scholar 

  • Austin, P. J., Sucher, L. A., Robbins, C. T., and Hagerman, A. E. 1989. Tannin-binding proteins in saliva of deer and their absence in saliva of sheep and cattle. J. Chem. Ecol. 15:1335-1347.

    Google Scholar 

  • Bae, H. D., McAllister, T. A., Yanke, J., Cheng, K. J., and Muir, A. D. 1993. Effects of condensed tannins on endoglucanase activity and filter paper digestion by Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 59:2132-2138.

    Google Scholar 

  • Barry, T. N. 1985. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. 3. Rates of body and wool growth. Br. J. Nutr. 54:211-217.

    Google Scholar 

  • Barry, T. N., and Duncan, S. J. 1984. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. 1. Voluntary intake. Br. J. Nutr. 51:485-491.

    Google Scholar 

  • Barry, T. N., Manley, T. R., and Duncan, S. J. 1986. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. 4. Sites of carbohydrate and protein digestion as influenced by dietary reactive tannin concentration. Br. J. Nutr. 55:123-137.

    Google Scholar 

  • Bartz, S., Landgraf, B., Fay, P. L., and Havstad, K. 1985. Leafy spurge (Euphorbia esula) as a forage component for ewes and lambs. SID Res. Digest 1(2):39-42.

    Google Scholar 

  • Burns, R. E. 1966. Tannin in Sericea lespedeza. Ga. Agric. Exp. Stn. Bull. N.S. 164.

  • Burns, R. E. 1971. Methods for estimation of tannin in grain sorghum. Agron. J. 63:511-512.

    Google Scholar 

  • Butler, L. G., Rogler, J. C., Mehanso, H., and Carlson, D. M. 1986. Dietary effects of tannins, pp. 141-157, in V. Cody, E. Middleton, J. B. Harborne (eds.) Proceedings, Symposium on Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological, and Structure—Activity Relationships. Buffalo. Alan R. Liss, New York.

    Google Scholar 

  • Cassida, K. A., Barton, B. A., Hough, R. L., Wiedenhoeft, M. H., and Guillard, K. 1994. Feed intake and apparent digestibility of hay-supplemented Brassica diets for lambs. J. Anim. Sci. 72:1623-1629.

    Google Scholar 

  • Chapin, F. S., Bryant, J. P., and Fox, J. F. 1985. Lack of induced chemical defense in juvenile Alaskan woody plants in response to simulated browsing. Oecologia 67:457-459.

    Google Scholar 

  • Chase, C. C. Jr., and Hibberd, C. A. 1987. Utilization of low-quality native grass hay by beef cows fed increasing quantities of corn grain. J. Anim. Sci. 65:557.

    Google Scholar 

  • Chiquette, J., Cheng, K. J., Rode, L. M., and Milligan, L. P. 1989. Effect of tannin content in two isosynthetic strains of birdsfoot trefoil (Lotus corniculatus L.) on feed digestibility and rumen fluid composition in sheep. Can. J. Anim. Sci. 69:1031-1039.

    Google Scholar 

  • Clausen, T. P., Reichardt, P. B., Bryant, J. P., Werner, R. A., and Post, K. 1989. Chemical model for short-term induction in quaking aspen (Populus tremuloides) foliage against herbivores. J. Chem. Ecol. 15:2335-2345.

    Google Scholar 

  • Cooper, S. M., and Owen-Smith, N. 1985. Condensed tannins deter feeding by browsing ruminants in a South African savanna. Oecologia 67:142.

    Google Scholar 

  • Cope, W. A., Bell, T. A., and Smart, W. W. G. 1971. Seasonal changes in enzyme inhibitor and tannin content in Sericea lespedeza. Crop Sci. 11:893-895.

    Google Scholar 

  • Evans, F. J., and Kinghorn, A. D. 1977. A comparative phytochemical study of the diterpenes of some species of the genera Euphorbia and Elaeophorbia (Euphorbicaceae). Bot. J. Linn. Soc. 74:23-27.

    Google Scholar 

  • Fox, D., Kirby, D., Caton, J., and Lym, R. 1991. Chemical composition of leafy spurge and alfalfa at four phenological stages of growth. Proc. N.D. Acad. Sci. 45:46.

    Google Scholar 

  • Gill, J. L. 1981. Evolution of statistical design and analysis of experiments. J. Dairy Sci. 64:1494-1519.

    Google Scholar 

  • Goering, H. K., and van Soest, P. J. 1970. Forage fiber analysis (apparatus, reagents, procedures, and some applications). USDA Agriculture Handbook 379. ARS, Washington, D.C.

    Google Scholar 

  • Hart, S. P. 1987. Associative effects of sorghum silage and sorghum grain diets. J. Anim. Sci. 64:1779-1789.

    Google Scholar 

  • Hassan, A. A., Woody, H. D., and Young, A. W. 1988. Associative effects of mixed diets in sheep. Trans. Ill. Acad. Sci. 81:1-8.

    Google Scholar 

  • Jandel Scientific. 1993. SigmaStat User's Manual. San Rafael, California.

  • Jones, W. T., and Mangan, J. L. 1977. Complexes of the condensed tannins of sainfoin (Onobrychis viciifolia Scop.) With fraction l leaf protein and with submaxillary muco-protein, and their reversal by polyethylene glycol and pH. J. Sci. Food Agric. 28:126-136.

    Google Scholar 

  • Khazaal, K., Markantonatos, X., Nastis, A., and Ørskov, E. R. 1992. Changes with maturity in fibre composition and levels of extractable polyphenols in Greek browse: Effects on in vitro gas production and in sacco dry matter degradation. J. Sci. Food Agric. 63:237-244.

    Google Scholar 

  • Kronberg, S. L., and Walker, J. W. 1993. Ruminal metabolism of leafy spurge in sheep and goats: a potential explanation for differential foraging on spurge by sheep, goats, and cattle. J. Chem. Ecol. 19:2007-2017.

    Google Scholar 

  • Kronberg, S. L., Lynch, W. C., Cheney, C. D., and Walker, J. W. 1995. Potential aversive compounds in leafy spurge for ruminants and rats. J. Chem. Ecol. 21:1387-1399.

    Google Scholar 

  • Kumar, R., and Singh, M. 1984. Tannins: Their adverse role in ruminant nutrition. J. Agric. Food Chem. 32:447-453.

    Google Scholar 

  • Kupchan, S. M., Uchida, I., Branfman, A. R., Dailey, R. G., and Yufei, B. 1976. Antileukemic principles isolated from Euphorbiaceae plants. Science 191:571-572.

    Google Scholar 

  • Lajeunesse, S., Sheley, R., Lym, R. G., Cooksey, D., Duncan, C., Lacey, J., Rees, N., and Ferrell, M. 1995. Leafy spurge: Biology, ecology and management. Montana State University Cooperative Extension Service ED-134.

  • Landgraf, B. K., Fay, P. L., and Havstad, K. M. 1984. Utilization of leafy spurge (Euphorbia esula) by sheep. Weed Sci. 32:348-352.

    Google Scholar 

  • Lees, G. L., Hinks, C. F., and Suttill, N. H. 1994. Effect of high temperature on condensed tannin accumulation in leaf tissues of big trefoil (Lotus uliginosus Schkuhr). J. Sci. Food Agric. 65:415-421.

    Google Scholar 

  • Lym, R. G., and Kirby, D. R. 1987. Cattle foraging behavior in leafy spurge (Euphorbia esula) infested rangeland. Weed Tech. 1:314-318.

    Google Scholar 

  • Lym, R. G., Messersmith, C. G., and Peterson, D. E. 1988. Leafy spurge identification and control. North Dakota Extension Service Circular W-765.

  • McDougall, E. I. 1948. Studies on ruminant saliva. I. The composition and output of sheep's saliva. Biochem. J. 43:99.

    Google Scholar 

  • Mehanso, H., Asquith, T. N., Butler, L. G., Rogler, J. C., and Carlson, D. M. 1992. Tanninmediated induction of proline-rich protein synthesis. J. Agric. Food Chem. 40:93-97.

    Google Scholar 

  • Moe, P. W. 1979. Associated effects of feedstuffs. Pacific Northwest Animal Nutrition Conference, p. 177.

  • Nagy, J. G., Steinhoff, H. W., and Ward, G. M. 1964. Effect of essential oils of sagebrush on deer rumen microbial function. J. Wildl. Manage. 28:785-790.

    Google Scholar 

  • Nelson, K. E., Pell, A. N., Coane, P. H., Giner-Chavez, B. I., and Schofield, P. 1997. Chemical and biological assays to evaluate bacterial inhibition by tannins. J. Chem. Ecol. 23:1175-1194.

    Google Scholar 

  • Oh, H. K., Sakai, T., Jones, M. B., and Longhurst, W. M. 1967. Effect of various essential oils isolated from Douglas fir needles upon sheep and deer rumen microbial activity. Appl. Microbiol. 15:777-783.

    Google Scholar 

  • Olson, B. E., and Kelsey, R. G. 1997. Effect of Centaurea maculosa on sheep rumen microbial activity and mass in vitro. J. Chem. Ecol. 23:1131-1144.

    Google Scholar 

  • Olson, B. E., Wallander, R. T., Thomas, V. M., and Kott, R. W. 1996. Effect of previous experience on sheep grazing leafy spurge. Appl. Anim. Behav. 50:161-176.

    Google Scholar 

  • Perevolotsky, A. 1994. Tannins in Mediterranean woodland species: lack of response to browsing and thinning. Oikos 71:333-340.

    Google Scholar 

  • Price, M. L., van Scoyoc, S., and Butler, L. G. 1978. A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J. Agric. Food Chem. 26:1214-1218.

    Google Scholar 

  • Provenza, F. D. 1995. Postingestive feedback as an elementary determinant of food selection and intake in ruminants. J. Range Manage. 48:2-17.

    Google Scholar 

  • Provenza, F. D. 1996. Acquired aversions as the basis for varied diets of ruminants foraging on rangelands. J. Anim. Sci. 74:2010-2020.

    Google Scholar 

  • Provenza, F. D., and Malechek, J. C. 1984. Diet selection by domestic goats in relation to blackbrush twig chemistry. J. Appl. Ecol. 21:831-841.

    Google Scholar 

  • Reilly, W., and Kaufman, K. R. 1979. The social and economic impact of leafy spurge in Montana, pp. 21-24 in Proceedings, Leafy Spurge Symposium. North Dakota State University Cooperative Extension Service, Fargo.

    Google Scholar 

  • Robbins, C. T., Mole, S., Hagerman, A. E., and Hanley, T. A. 1987. Role of tannins in defending plants against ruminants: Reduction in dry matter digestion? Ecology 68:1606-1615.

    Google Scholar 

  • Roberts, J. L. 1996. Effects of defoliating leafy spurge on condensed tannin concentrations, sheep rumen microorganisms, and migratory grasshoppers. MS thesis, Montana State University, Bozeman, Montana.

    Google Scholar 

  • SAS. 1987. SAS User's Guide: Statistics. SAS Institute, Cary, North Carolina.

    Google Scholar 

  • Sedivec, K. K., and Maine, R. P. 1993. Biological control of leafy spurge using angora goats, abstract no. 230. in Abstract 46th Annual Meeting of the Society of Range Management, Albuquerque, New Mexico.

  • Seip, E. H., and Hecker, E. 1982. Skin irritant ingenol esters from Euphorbia esula. J. Med. Plant Res. 46:215-218.

    Google Scholar 

  • Skogsmyr, I., and FagerstrÖm, T. 1992. The cost of anti-herbivory defence: An evaluation of some ecological and physiological factors. Oikos 64:451-457.

    Google Scholar 

  • Smart, W. W. G., Jr., Bell, T. A., Stanely, N. W., and Cope, W. A. 1961. Inhibition of rumen cellulase by an extract from sericea forage. J. Dairy Sci. 44:1945-1946.

    Google Scholar 

  • Striby, K. D., Wambolt, C. L., Kelsey, R. G., and Havstad, K. M. 1987. Crude terpenoid influence on in vitro digestibility of sagebrush. J. Range Manage. 40:244-248.

    Google Scholar 

  • Terrill, T. H., Rowan, A. M., Douglas, G. B., and Barry, T. N. 1992. Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains. J. Sci. Food Agric. 58:321-329.

    Google Scholar 

  • Thomas, V. M., Clark, C. K., Kott, R. W., and Olson, B. E. 1994. Influence of leafy spurge on ruminal digestion and metabolism and blood metabolite profiles in sheep. Sheep Goat Res. J. 10:168-172.

    Google Scholar 

  • Tilley, J. M. A., and Terry, R. A. 1963. A two-stage technique for the in vitro digestion of forage crops. J. Br. Grassl. Soc. 18:104-111.

    Google Scholar 

  • Upadhyay, R. R., Bakhtavar, F., Ghaisarzadeh, M., and Tilabi, J. 1978. Cocarcinogenic and irritant factors in Euphorbia esula L. latex. Tumori 64:99-102.

    Google Scholar 

  • Wachenheim, D. E., Blythe, L. L., and Craig, A. M. 1992. Characterization of rumen bacterial pyrrolizidine alkaloid biotransformation in ruminants of various species. Vet. Hum. Toxicol. 34:513-517.

    Google Scholar 

  • Walker, J. W., Kronberg, S. L., Al-Rowaily, S. L., and West, N. E. 1994a. Comparison of sheep and goat preferences for leafy spurge. J. Range Manage. 47:429-434.

    Google Scholar 

  • Walker, J. W., Kronberg, S. L., Al-Rowaily, S. L., and West, N. E. 1994b. Managing noxious weeds with livestock: Studies on leafy spurge. USDA ARS Sheep Research Progress Report No. 3. U.S. Sheep Experiment Station, Dubois, Idaho.

    Google Scholar 

  • Walters, T., and Stafford, H. A. 1984. Variability in accumulation of proanthocyanidins (condensed tannins) in needles of Douglas-fir (Pseudotsuga menziesii) following long-term budworm defoliation. J. Chem. Ecol. 10:1469-1476.

    Google Scholar 

  • Yokoyama, M. T., and Johnson, K. A. 1988. Microbiology of the rumen and intestine, pp. 125-144, in D. C. Church (ed.). The Ruminant Animal: Digestive Physiology and Nutrition. Waveland Press, Prospect Heights, Illinois.

    Google Scholar 

  • Zinn, R. A., and Owens, F. N. 1986. A rapid procedure for purine measurements and its use for estimating net ruminal protein synthesis. Can. J. Anim. Sci. 66:157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, J.L., Olson, B.E. Effect of Euphorbia esula on Sheep Rumen Microbial Activity and Mass In Vitro. J Chem Ecol 25, 297–314 (1999). https://doi.org/10.1023/A:1020846813258

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020846813258

Navigation