Skip to main content
Log in

Complementarity and other key criteria in the conservation of herb-rich forests in Finland

  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

Complementarity of the nature reserve network in southernmost Finlandwas examined using a simple heuristic algorithm and occurrence data of 75characteristic herb-rich forest vascular plant species in 126 protected and 120non-protected sites. Three different minimum sets were selected to represent 1,5, or 10 occurrences of each species. In each minimum set there weresignificantly more protected than non-protected sites. Thus, although efficiencyis not maximal in the existing reserve network, the network does provide arepresentative basis for the conservation of herb-rich forest plants. However,some deficiencies were also noticed, particularly new reserves in floristicallydiverse herb-rich forests along watercourses would supplement the existingreserve network. On the other hand, the growing concern over the shortcomings ofreserve selection studies using presence/absence data is echoed here, becausemany of the protected forests not included in the minimum sets harbour importantnature conservation values. With regard to the five biological reserve selectioncriteria (e.g. occurrences of threatened species) considered here, theperformance of the existing reserve network is rather good. However, examinationof five reserve design criteria revealed some deficiencies, particularlyvulnerability of many reserves to potential edge effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahti T., Hamet-Ahti L. and Jalas J. 1968. Vegetation zones and their sections in northwestern Europe. Annales Botanici Fennici 5: 169–211.

    Google Scholar 

  • Alalammi P. (ed.) 1987. Suomen Kartasto. Vihko 131. Ilmasto Atlas of Finland, Folio 131, Climate. National Board of Survey and Geographical Society of Finland, Helsinki.

  • Alalammi P. (ed.) 1990. Suomen Kartasto. Vihko 123–126. Geologia Atlas of Finland, Folio 123–126, Geology. National Board of Survey and Geographical Society of Finland, Helsinki.

  • Alanen A. 1992. Lehtojen suojelu ja hoito. Memoranda Societatis pro Fauna et Flora Fennica 68 (in Finnish with English summary): 73–76.

    Google Scholar 

  • Angelstam P. 1992. Conservation of communities – the roles of edges, surroundings and mosaic structure of man-dominated landscapes. In: Hansson L. (ed.), Ecological Principles of Nature Conservation. Elsevier, London, pp. 9–70.

    Google Scholar 

  • Anonymous 1988. Lehtojensuojelutyoryhman mietinto (in Finnish). Komiteanmietinto 16, Goverment Printing Centre, Helsinki, 279 pp.

    Google Scholar 

  • Araujo M. and Williams P.H. 2000. Selecting areas for species persistence using occurrence data. Biological Conservation 96: 331–345.

    Google Scholar 

  • Araujo M.B., Williams P.H. and Turner A. 2002. A sequential approach to minimise threats within selected conservation areas. Biodiversity and Conservation 11: 1011–1024.

    Google Scholar 

  • Belbin L. 1995. PATN. Pattern Analysis Package. CSIRO, Division of Wildlife and Ecology, Canberra, Australia, Technical reference.

    Google Scholar 

  • Bernes C. 1993. The Nordic Environment – Present State, Trends and Threats. Nordic Council of Ministers, Copenhagen, 211 pp.

    Google Scholar 

  • Bernes C. (ed.) 1994. Biological Diversity in Sweden. A Country Study. Swedish Environmental Protection Agency, Stockholm, Monitor 14, 280 pp.

  • Bibby C.J. 1998. Selecting areas for conservation. In: Sutherland W.J. (ed.), Conservation Science and Action. Blackwell Science, Oxford, UK, pp. 176–201.

    Google Scholar 

  • Cabeza M. and Moilanen A. 2001. Design of reserve networks and the persistence of biodiversity. Trends in Ecology and Evolution 16: 242–248.

    Google Scholar 

  • Cowling R.M. and Bond W.J. 1991. How small can reserves be? An empirical approach in Cape Fynbos, South Africa. Biological Conservation 58: 243–256.

    Google Scholar 

  • Diekmann M. 1999. Southern deciduous forests. Acta Phytogeographica Suecica 84: 33–53.

    Google Scholar 

  • Engelmark O. and Hytteborn H. 1999. Coniferous forests. Acta Phytogeographica Suecica 84: 55–74.

    Google Scholar 

  • Esseen P.-A., Ehnstrom B., Ericson L. and Sjoberg K. 1997. Boreal forests. Ecological Bulletins 46: 16–47.

    Google Scholar 

  • Euskirchen E.S., Chen J. and Bi R. 2001. Effects of edges on plant communities in a managed landscape in northern Wisconsin. Forest Ecology and Management 148: 93–108.

    Google Scholar 

  • Fraver S. 1994. Vegetation responses along edge-to-interior gradients in the mixed hardwood forests of the Roanoke River Basin, North Carolina. Conservation Biology 8: 822–832.

    Google Scholar 

  • Gustafsson L. 1994. A comparison of biological characteristics and distribution between Swedish threatened and non-threatened forest vascular plants. Ecography 17: 39–49.

    Google Scholar 

  • Gardenfors U. (ed.) 2000. Rodlistade arter i Sverige – The 2000 Red List of Swedish Species. ArtDatabanken, SLU, Uppsala, Sweden, 397 pp.

    Google Scholar 

  • Haeggstrom C.A. 1983. Vegetation and soil of wooded meadows in Nato, Aland. Acta Botanica Fennica 120: 1–66.

    Google Scholar 

  • Hanski I. 2000. Extinction debt and species credit in boreal forests: modelling the consequences of different approaches to biodiversity conservation. Annales Zoologi Fennici 37: 271–280.

    Google Scholar 

  • Hansson L. 1997. Environmental determinants of plant and bird diversity in ancient oak–hazel woodland in Sweden. Forest Ecology and Management 91: 137–143.

    Google Scholar 

  • Hansson L. 2001. Key habitats in Swedish managed forests. Scandinavian Journal of Forest Research Supplement 3: 52–61.

    Google Scholar 

  • Harrison S., Maron J. and Huxel G. 2000. Regional turnover and fluctuation in populations of five plants confined to serpentine seeps. Conservation Biology 14: 769–779.

    Google Scholar 

  • Heikkinen R. 2000. Lehtokasvien suojelualueverkon edustavuus Uudellamaalla ja vuokkovyohykkeessa (in Finnish). Suomen ymparisto 440: 9–47.

    Google Scholar 

  • Honka S. 2000. Pohjois-Karjalan lehtojensuojelualueverkon edustavuus (in Finnish). M.Sc. Thesis, University of Joensuu, Joensuu, Finland.

    Google Scholar 

  • Hylander K., Jonsson B.G. and Nilsson C. 2002. Evaluating buffer strips along boreal streams using bryophytes as indicators. Ecological Applications 12: 797–806.

    Google Scholar 

  • Hamet-Ahti L., Suominen J., Ulvinen T. and Uotila P. (eds) 1998. Retkeilykasvio (Field flora of Finland). 4th edn. Finnish Museum of Natural History, Botanical Museum, Helsinki (in Finnish with English summary).

    Google Scholar 

  • Jonsson B.G. and Jonsell M. 1999. Exploring potential biodiversity indicators in boreal forests. Biodiversity and Conservation 8: 1417–1433.

    Google Scholar 

  • Kangas P., Jappinen J.-P., von Weissenberg M. and Karjalainen H. (eds) 1998. National Action Plan for Biodiversity in Finland, 1997–2005. Ministry of the Environment, Helsinki, 127 pp.

    Google Scholar 

  • Koponen T. 1967. On the dynamics of vegetation and flora in Karkali Nature Reserve, southern Finland. Annales Botanici Fennici 4: 121–218.

    Google Scholar 

  • Lahti T. and Vaisanen R.A. 1987. Ecological gradients of boreal forests in South Finland: an ordination test of Cajander's forest site type theory. Vegetatio 68: 145–156.

    Google Scholar 

  • Maddock A. and Du Plessis M.A. 1999. Can species data only be appropriately used to conserve biodiversity? Biodiversity and Conservation 8: 603–615.

    Google Scholar 

  • Margules C.R. and Pressey R.L. 2000. Systematic conservation planning. Nature 405: 243–253.

    Google Scholar 

  • Margules C.R., Nicholls A.O. and Usher M.B. 1994. Apparent species turnover, probability of extinction and the selection of nature reserves: a case study of the Ingleborough limestone pavements. Conservation Biology 8: 398–409.

    Google Scholar 

  • Matlack G.R. 1993. Microenvironmental variation within and among forest edge sites in the Eastern United States. Biological Conservation 66: 185–194.

    Google Scholar 

  • Nantel P., Bouchard A., Brouillet L. and Hay S. 1998. Selection of areas for protecting rare plants with integration of land use conflicts: a case study for the west coast of Newfoundland, Canada. Biological Conservation 84: 223–234.

    Google Scholar 

  • Nicholls A.O. 1998. Integrating population abundance, dynamics and distribution into broad-scale priority setting. In: Mace G.M., Balmford A. and Ginsberg J.R. (eds), Conservation in a Changing World. Cambridge University Press, Cambridge, UK, pp. 251–272.

    Google Scholar 

  • Nicholls A.O. and Margules C.R. 1993. An upgraded reserve selection algorithm. Biological Conservation 64: 165–169.

    Google Scholar 

  • Nilsson S.G. 1997. Forests in the temperate-boreal transition: natural and man-made features. Ecological Bulletins 46: 61–71.

    Google Scholar 

  • Nilsson S.G. and Ericson L. 1997. Conservation of plant and animal populations in theory and practice. Ecological Bulletins 46: 117–139.

    Google Scholar 

  • Noss R.F. and Cooperrider A.Y. 1994. Saving Nature's Legacy. Protecting and Restoring Biodiversity. Island Press, Washington, DC.

    Google Scholar 

  • Pimm S.L. and Lawton J.H. 1998. Planning for biodiversity. Science 279: 2068–2069.

    Google Scholar 

  • Possingham H., Ball I. and Andelman S. 2000. Mathematical methods for identifying representative reserve networks. In: Ferson S. and Burgman M. (eds), Quantitative Methods for Conservation Biology. Springer, New York, pp. 291–306.

    Google Scholar 

  • Prendergast J.R., Quinn R.M. and Lawton J.H. 1999. The gaps between theory and practice in selecting nature reserves. Conservation Biology 13: 484–492.

    Google Scholar 

  • Pressey R.L. and Nicholls A.O. 1989. Efficiency in conservation evaluation: scoring versus iterative approaches. Biological Conservation 50: 199–218.

    Google Scholar 

  • Pressey R.L., Humpries C.J., Margules C.R., Vane-Wright R.I. and Williams P.H. 1993. Beyond opportunism: key principles for systematic reserve selection. Trends in Ecology and Evolution 8: 124–128.

    Google Scholar 

  • Pykala J. 1992. Lohjan kunnan arvokkaat lehdot (in Finnish). Lohjan kunnan ymparistosuojelulautakunta, Julkaisu 3/ 92, Lohja.

  • Rassi P., Kaipiainen H., Mannerkoski I. and Stahls G. 1992. Uhanalaisten elainten ja kasvien seuran-tatoimikunnan mietinto (Report on the Monitoring of Threatened Animals and Plants in Finland). Komiteanmietinto 1991: 30. Ministry of the Environment, Helsinki, 328 pp.

    Google Scholar 

  • Rivard D.H., Poitevin J., Plasse D., Carleton M. and Currie D.J. 2000. Changing species richness and composition in Canadian national parks. Conservation Biology 14: 1099–1109.

    Google Scholar 

  • Rodrigues A.S.L., Tratt R., Wheeler B.D. and Gaston K.J. 1999. The performance of existing networks of conservation areas in representing biodiversity. Proceedings of the Royal Society B 266: 1453–1460.

    Google Scholar 

  • Rodrigues A.S.L., Gregory R.D. and Gaston K.J. 2000a. Robustness of reserve selection procedures under temporal species turnover. Proceedings of the Royal Society B 267: 49–55.

    Google Scholar 

  • Rodrigues A.S.L., Cerdeira J.O. and Gaston K.J. 2000b. Flexibility, efficiency, and accountability: adapting reserve selection algorithms to more complex conservation problems. Ecography 23: 565–574.

    Google Scholar 

  • Rodrigues A.S.L., Gaston K.J. and Gregory R.D. 2000c. Using presence–absence data to establish reserve selection procedures that are robust to temporal species turnover. Proceedings of the Royal Society B 267: 897–902.

    Google Scholar 

  • Ryti R.T. 1992. Effect of the focal taxon on the selection of nature reserves. Ecological Applications 2: 404–410.

    Google Scholar 

  • Ryttari T. and Tukia H. 1994. Fiskarsinmaen lehto-ja niittyalueen kasvillisuus ja hoito (in Finnish). Metsahallituksen luonnonsuojelujulkaisuja, Sarja A, No 31. Vantaa.

  • Samuelsson J., Gustafsson L. and Ingelof T. 1994. Dying and Dead Trees. A Review of their Importance for Biodiversity. Swedish Threatened Species Unit, Uppsala, Sweden.

    Google Scholar 

  • Saunders D.A, Hobbs R.J. and Margules C.R. 1991. Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5: 18–32.

    Google Scholar 

  • Sætersdal M. and Birks H.J.B. 1993. Assessing the representativeness of nature reserves using multivariate analysis: vascular plants and breeding birds in deciduous forests,Western Norway. Biological Conservation 65: 121–132.

    Google Scholar 

  • Sætersdal M., Line J.M. and Birks H.J.B. 1993. How to maximize biological diversity in nature reserve selection: vascular plants and breeding birds in deciduous forests, Western Norway. Biological Conservation 66: 131–138.

    Google Scholar 

  • Shafer C.L. 1990. Nature reserves. Island Theory and Conservation Practice. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Simberloff D. 1998. Small and declining populations. In: SutherlandW.J. (ed.), Conservation Science and Action. Blackwell Science, Oxford, UK, pp. 116–134.

    Google Scholar 

  • Spellerberg I.F. 1992. Evaluation and Assessment for Conservation. Chapman & Hall, London.

    Google Scholar 

  • Soule M.E. and Simberloff D. 1986. What do genetics and ecology tell us about the design of nature reserves? Biological Conservation 35: 19–40.

    Google Scholar 

  • Tilastokeskus. 1994. Ymparistotilasto. Environment Statistics. Ymparisto, vol. 3. Tilastokeskus, SVT, Helsinki.

    Google Scholar 

  • Turpie J.K. 1995. Prioritizing South African esturies for conservation: a practical example using waterbirds. Biological Conservation 74: 175–185.

    Google Scholar 

  • Vane-Wright R.I. 1996. Identifying priorities for the conservation of biodiversity: systematic biological criteria within a socio-political framework. In: Gaston K.J. (ed.), Biodiversity. Biology of Numbers and Difference. Blackwell Science, Oxford, UK, pp. 309–344.

    Google Scholar 

  • Virkkala R. and Toivonen H. 1999. Maintaining Biological Diversity in Finnish Forests. The Finnish Environment 278. Finnish Environment Institute, Helsinki.

    Google Scholar 

  • Virolainen K., Nattinen K., Suhonen J. and Kuitunen M. 2001. Selecting herb-rich forest networks to protect different measures of biodiversity. Ecological Applications 11: 411–420.

    Google Scholar 

  • Williams P.H. 1998. Key sites for conservation: area-selection methods for biodiversity. In: Mace G.M., Ginsberg A. and Ginsberg J.R. (eds), Conservation in a Changing World. Cambridge University Press, Cambridge, UK, pp. 211–249.

    Google Scholar 

  • Williams P., Gibbons D., Margules C., Rebelo A., Humpries C. and Pressey R. 1996. A comparison of richness hotspots, rarity hotspots, and complementary areas for conserving diversity of British birds. Conservation Biology 10: 155–174.

    Google Scholar 

  • Winston M.R. and Angermeier P.L. 1995. Assessing conservation value using centers of population density. Conservation Biology 9: 1518–1527.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heikkinen, R.K. Complementarity and other key criteria in the conservation of herb-rich forests in Finland. Biodiversity and Conservation 11, 1939–1958 (2002). https://doi.org/10.1023/A:1020822509421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020822509421

Navigation