Journal of Chemical Ecology

, Volume 25, Issue 5, pp 1007–1027 | Cite as

Chemical Defense in Larval Tortoise Beetles: Essential Oil Composition of Fecal Shields of Eurypedus nigrosignata and Foliage of its Host Plant, Cordia curassavica

  • Nélida E. Gómez
  • Ludger Witte
  • Thomas Hartmann
Article

Abstract

Larvae of the tortoise beetle Eurypedus nigrosignata construct fecal shields using cast skins and fecal strands. Survival of larvae with intact shields was higher in the field than for larvae with shields removed. In the laboratory, E. nigrosignata feculae had a deterrent effect on feeding in the ant Myrmica rubra as did an extract of the host plant, Cordia curassavica. Three chemical types were identified in the host-plant foliage and were named β-terpinene, α-pinene, and sabinene, depending on their mono- and sesquiterpene composition. This is the first report of lower terpenes (essential oils) in foliage of Cordia. Fecal shields of E. nigrosignata displayed the same terpene pattern as larval host-plant leaves. The absolute concentration of mono- and sesquiterpenes in the dorsal fecal shield depended on the plant chemical type and tended to decrease with larval age. No oxidation or detoxification products of ingested terpenes were detected in the larval fecula, indicating that the chemical composition of the larval fecal shield is influenced primarily by the host-plant secondary chemistry.

Eurypedus nigrosignata tortoise beetle Chrysomelidae Cordia curassavica Boraginaceae lower terpenes essential oil chemical type chemotype fecal shield chemical defense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Agelopoulus, N. G., Dicke, M., and Posthumus, M. A. 1995. Role of volatile infochemicals emitted by feces of larvae in host-searching behavior of parasitoid Cotesia rubecula (Hymenoptera: Braconidae): A behavioral and chemical study. J. Chem. Ecol. 21:1789–1811.Google Scholar
  2. Alborn, H. T., Lewis, W. J., and Tumlinson, J. H. 1995. Host-specific recognition kairomone for the parasitoid Microplitis croceipes (Cresson). J. Chem. Ecol. 21:1697–1708.Google Scholar
  3. Balsbaugh, E. U. 1988. Mimicry and the Chrysomelidae, pp. 261–285, in P. Jolivet, E. Petitpierre, and T. H. Hsiao (eds.). Biology of Chrysomelidae. Kluwer Academic Publishers, Dordrecht.Google Scholar
  4. Becker, M., and Pires Freire, A. J. 1996. Population ecology of Gratiana spadicea (Klug), a monophagous cassidine on an early successional Solanaceae in southern Brazil, pp. 271–287, in P. H. A. Jolivet and M. L. Cox (eds.). Chrysomelidae Biology, Vol. 2: Ecological Studies. SPB Academic Publishing, Amsterdam.Google Scholar
  5. Berenbaum, M. R. 1985. Interactions among allelochemicals in plants, Recent Adv. Phytochem. 19:139–169.Google Scholar
  6. BjÖrkman, C., and Larsson, S. 1991. Pine sawfly defense and variation in host plant resin acids: A trade-off with growth. Ecol. Entomol. 16:283–289.Google Scholar
  7. Blum, M. S. 1994. Antipredator devices in larvae of the Chrysomelidae: A unified synthesis for defensive eclecticism, pp. 277–288, in P. Jolivet, E. Petitpierre, and T. H. Hsiao (eds.). Biology of Chrysomelidae. Kluwer Academic Publishers, Dordrecht.Google Scholar
  8. Bowers, M. D. 1990. Recycling plant natural products for chemical defense, pp. 353–386, in J. O. Schmidt and D. E. Evans (eds.). Insect Defenses. Adaptative Mechanisms and Strategies of Prey and Predators. SUNY, Albany.Google Scholar
  9. Brattsten, L. B. 1983. Cytochrome P-450 involvement in the interactions between plant terpenes and insect herbivores, pp. 173–195, in P. A. Hedin (ed.). Plant Resistant to Insects, ACS Symposium Series 208. American Chemical Society, Washington, DC.Google Scholar
  10. Bryant, J. P., Reichardt, P. B., Clausen, T. P., Provenza, F. D., and Kuropat, P. J. 1992. Woody plant-mammal interactions, pp. 343–370, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites, 2nd. ed., Vol. II: Evolutionary and Ecological Processes. Academic Press, New York.Google Scholar
  11. Buzzi, Z. J. 1988. Biology of Neotropical Cassidinae, pp. 559–599, in P. Jolivet, E. Petitpierre, and T. H. Hsiao (eds.). Biology of Chrysomelidae. Kluwer Academic Publishers, Dordrecht.Google Scholar
  12. Cepleanu, F., Hamburger, M. O., Sordat, B., Msonthi, J. D., Gupta, M. P., Saadou, M., and Hostettman, K. 1994. Screening of tropical medicinal plants for molluscicial, larvicidal, fungicidal, and cytotoxic activities and brine shrimp toxicity. Int. J. Pharmacog. 32:294–307.Google Scholar
  13. Chapuis, J. C., Sordat, B., and Hostettmann, K. 1988. Screening for cytotoxic activity of plants used in traditional medicine. J. Ethnopharmacol. 23:273–284.PubMedGoogle Scholar
  14. Chen, T. K., Ales, D. C., Baenzinger, C., and Wiemer, D. F. 1983. Ant-repellent triterpenoids from Cordia alliodora. J. Org. Chem. 48:3525–3531.Google Scholar
  15. Coley, P. D. 1983. Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol. Monogr. 53:209–233.Google Scholar
  16. Coley, P. D., and Kursar, T. A. 1996. Anti-herbivore defenses of young tropical leaves: Physiological constraints and ecological trade-offs, pp. 305–336, in S. S. Mulkey, R. L. Chazdon, and A. P. Smith (eds.). Tropical Forest Plant Ecophysiology. Chapman & Hall, New York.Google Scholar
  17. Croteau, R., Felton, M., Karp, F., and Kjonaas, F. 1981. Relationship of camphor biosynthesis to leaf development in sage (Salvia officinalis). Plant Physiol. 67:820–824.Google Scholar
  18. DAB 10 (Deutsches Arzneibuch) 1991. Gehaltsbetimmung des ätherisches Oelen, Grundlfg., v.4.5.8., amtliche Ausgabe. Deutscher Apotheker Verlag, Stuttgart.Google Scholar
  19. Eisner, T., van Tassell, E., and Carrel, J. 1967. Defensive use of a “fecal” shield by a beetle larva. Science 158:1471–1473.PubMedGoogle Scholar
  20. Eisner, T., Johnessee, J. S., Carrel, J., Hendry, L. B., and Meinwald, J. 1974. Defensive use by an insect of a plant resin. Science 184:996–999.PubMedGoogle Scholar
  21. Engel, H. 1935. Biologie und Ökologie von Cassida viridis L. Z. Morphol. Oekol. Tiere 30:42–96.Google Scholar
  22. Everaerts, C., Bonnard, O., Pasteels, J. M., Roisin, Y., and KÖnig, W. A. 1990. (+)-α-Pinene in the defensive secretion of Nasutitermes princeps (Isoptera, Termitidae). Experientia 46:227–230.Google Scholar
  23. Fahlen, A., Welander, M., and Wennersten, R. 1997. Effects of light-temperature regimes on plant growth and essential oil yield of selected aromatic plants. J. Sci. Food Agric. 73(1):111–119.Google Scholar
  24. Fiebrig, K. 1910. Cassiden and Cryptocephaliden Paraguays. Zool. Jahrb., Suppl. 12:161–264.Google Scholar
  25. Gershenzon, J. 1994. The cost of plant chemical defense against herbivory: A biochemical perspective, pp. 105–173, in E. A. Bernays (ed.). Insect-Plant Interactions, Vol. V. CRC Press, Boca Raton, Florida.Google Scholar
  26. GÓmez, N. E. 1997. The fecal shields of larvae of tortoise beetles (Cassidinae: Chrysomelidae): A role in chemical defense using plant-derived secondary metabolites. Dissertation. Naturwissenschaftsfakultät, Technische Universität Braunschweig, Braunschweig, 124 pp.Google Scholar
  27. Gressitt, J. L. 1952. The tortoise beetles of China (Chrysomelidae: Cassidinae). Proc. Calif. Acad. Sci. 27:433–592.Google Scholar
  28. Griffiths, L. A. 1959. On the distribution of gentisic acid in green plants. J. Exp. Biol. 10:437.Google Scholar
  29. Hawkeswood, T. J. 1982. Notes on the life history of Aspidomorpha maculatissima Boheman (Coleoptera: Chrysomelidae: Cassidinae) at Townsville, North Queensland. Victorian Nat. 99:92–101.Google Scholar
  30. KovÁts, E. sz. 1965. Gas chromatographic characterization of organic substances in the retention index system. Adv. Chromatogr. 1:229–247.Google Scholar
  31. Langenheim, J. H. 1994. Higher plant terpenoids: A phytocentric overview of their ecological roles. J. Chem. Ecol. 20:1223–1280.Google Scholar
  32. Larsson, S., and Ohmart, C. P. 1988. Leaf age and larval performance of the leaf beetle Paropsis atomaria. Ecol. Entomol. 13:19–24.Google Scholar
  33. Larsson, S., BjÖrkman, C., and Graf, R. 1986. Responses of Neodiprion sertifer (Hym. Diprionidae) larvae to variation in needle resin concentration in Scots pine. Oecologia 70:77–84.Google Scholar
  34. Lopez Vargas, J. A. 1982. Phytochemical study of seeds of Cordia collococca l.c. micrantha Swartz (Boraginaceae). Ing. Cienc. Quim. 6:157–159.Google Scholar
  35. Manners, G. D., and Jurd, L. 1977. The hydroquinone terpenoids of Cordia alliodora. J. Chem. Soc. Perkin Trans. I 4:405–410.Google Scholar
  36. Miller, J. S. 1988. A revised treatment of Boraginaceae for Panama. Annu. Mo. Bot. Gard. 75:456–521.Google Scholar
  37. Moir, M., and Thomson, R. H. 1973. Naturally occurring quinones. Part XXII. Terpenoid quinones in Cordia spp. J. Chem. Soc. Perkin Trans. I 13:1352–1356.Google Scholar
  38. Morrow, P. A., and Fox, L. R. 1980. Effects of variation in Eucalyptus essential oil yield on insect growth and grazing damage. Oecologia (Berlin) 45:209–219.Google Scholar
  39. Morrow, P. A., Bellas, T. E., and Eisner, T. 1976. Eucalyptus oils in the defensive oral discharge of Australian sawfly larvae (Hymenoptera: Pergidae). Oecologia 24:193–206.Google Scholar
  40. Morton, T. C., and Vencl, F. V. 1998. Larval beetles form a defense from recycled host-plant chemicals discharged as fecal wastes. J. Chem. Ecol. 24:765–785.Google Scholar
  41. Muir, F., and Sharp, D. 1904. On the egg-cases and early stages of some Cassididae. Trans. Entomol. Soc. London, Part I 00:1–24.Google Scholar
  42. Nehlin, G., ValterovÁ, I., and Borg-Karlson, A.-K. 1996. Monoterpenes released from Apiaceae and the egg-laying preferences of the carrot psyllid, Trioza apicalis. Entomol. Exp. Appl. 80(1):83–86.Google Scholar
  43. Ohmart, C. P. 1996. Population dynamics of chrysomelid beetles feeding on Eucalyptus, pp. 263–269, in P. H. A. Jolivet and M. L. Cox (eds.). Chrysomelidae Biology, Vol. 2: Ecological Studies. SPB Academic Publishing, Amsterdam.Google Scholar
  44. Ohmart, C. P., and Larsson, S. 1989. Evidence for absoption of eucalypt essential oils by Paropsis atomaria Olivier (Coleoptera: Chrysomelidae). J. Aust. Entomol. Soc. 28:201–205.Google Scholar
  45. Ohmart, C. P., Stewart, L. G., and Thomas, J. R. 1985. Effects of nitrogen concentrations of Eucalyptus blakelyi foliage on the fecundity of Paropsis atomaria (Coleoptera: Chrysomelidae). Oecologia (Berlin) 68:41–44.Google Scholar
  46. Olmstead, K. 1994. Waste products as chrysomelid defenses, pp. 311–318, in P. H. Jolivet, M. L. Cox, and E. Petitpierre (eds.). Novel Aspects of the Biology of Chrysomelidae. Kluwer Academic Publishers, Dordrecht.Google Scholar
  47. Olmstead, K. L. 1996. Cassidine defenses and natural enemies, pp. 3–21, in P. H. A. Jolivet and M. L. Cox (eds.). Chrysomelidae Biology, Vol. 2: Ecological Studies. SPB Academic Publishing, Amsterdam.Google Scholar
  48. Olmstead, K. L., and Denno, R. F. 1993. Effectiveness of tortoise beetle larval shields against different predator species. Ecology 74:1394–1405.Google Scholar
  49. Pare, J. R. J. 1994. Microwave extraction of volatile oils. U.S. Patent No. 5,338,557, August 16, 1994.Google Scholar
  50. Pasteels, J. M., Daloze, D., and Rowell-Rahier, M. 1986. Chemical defense in chrysomelid eggs and neonate larvae. Physiol. Entomol. 11:29–37.Google Scholar
  51. Pasteels, J. M., Braekman, J. C., and Daloze, D. 1988. Chemical defense in the Chrysomelidae, pp. 233–252, in P. Jolivet, E. Petitpierre, and T. H. Hsiao (eds.). Biology of Chrysomelidae. Kluwer Academic Publishers, Dordrecht.Google Scholar
  52. Pasteels, J. M., Rowell-Rahier, M., Ehmcke, A., and Hartmann, T. 1996. Host-derived pyrrolizidine alkaloids in Oreina leaf beetles: Physiological, ecological and evolutionary aspects, pp. 213–226, in P. H. A. Jolivet and M. L. Cox (eds.). Chrysomelidae Biology, Vol. 2: Ecological Studies. SPB Publishing, Amsterdam.Google Scholar
  53. Pimentel, D., and Bellotti, A. C. 1976. Parasite-host population systems and genetic stability. Am. Nat. 110:877–888.Google Scholar
  54. Reid, C. A. M. 1995. A cladistic analysis of subfamilial relationships in the Chrysomelidae sensu lato (Chrysomeloidea), pp. 559–631, in J. Pakaluk and S. A. Slipinski (eds.). Biology, Phylogeny and Classification of Coleoptera, Paper Celebrating the 80th Birth of Roy A. Crowson Museum. Institut Zoologie PAN, Warzaina.Google Scholar
  55. Roisin, Y., Everaerts, C., Pasteels, J. M., and Bonnard, O. 1990. Caste-dependent reactions to soldier defensive secretion and chiral alarm/recruitment pheromone. J. Chem. Ecol. 16:2865–2875.Google Scholar
  56. Ross, S., and ElSohly, M. A. 1996. The volatile oil composition of fresh and air-dried buds of Cannabis sativa. J. Nat. Prod. 59:49–51.PubMedGoogle Scholar
  57. Schoeder, F. C., Farmer, J. J., Attygalle, A. B., Smedley, S. R., Eisner, T., and Meinwald, J. 1998. Combinatorial chemistry in insects: A library of defensive macrocyclic polyamines. Science 281:428–430.PubMedGoogle Scholar
  58. Scriber, J. M., and Slansky, F., Jr. 1981. The nutritional ecology of immature insects. Annu. Rev. Entomol. 26:183–211.Google Scholar
  59. Selman, B. J. 1994. The biology of the paropsine eucalyptus beetles of Australia, pp. 555–565, in P. H. Jolivet, M. L. Cox, and E. Petitpierre (eds.). Novel Aspects of the Biology of Chrysomelidae. Kluwer Academic Publishers, Dordrecht.Google Scholar
  60. Stehr, F. W. 1991. Immature Insects, Vol. 2. Kendall/Hunt Publishing, Dubuque, Iowa, 975 pp.Google Scholar
  61. Stevens, K. L., and Jurd, L. 1976. The structure and synthesis of alliodorin. Tetrahedron 32:665–668.Google Scholar
  62. Stevens, K. L., Jurd, L., and Manners, G. 1973. Alliodorin, a phenolic terpenoid from Cordia alliodora. Tetrahedron Lett. 31:2955–2958.Google Scholar
  63. Systat (Systat for Windows: Statistics). 1992. Version 5 Edition. Systat, Inc., Evanston, Illinois, 750 pp.Google Scholar
  64. van Leerdam, M. B., Smith, J. W., Fuchs, J. R., and Fuchs, T. W. 1985. Feces-mediated, host finding behavior of Cotesia flavipes, a parasite of Diatrea saccharalis (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 78:647–650.Google Scholar
  65. Vet, L. E. M., and Dicke, M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–172.Google Scholar
  66. Windsor, D. M. 1987. Natural history of a subsocial tortoise beetle, Acromis sparsa Boheman (Chrysomelidae, Cassidinae) in Panama. Psyche 94:127–150.Google Scholar
  67. Windsor, D. M., Riley, E. G., and Stockwell, H. P. 1992. An introduction to the biology and systematics of Panamanian tortoise beetles (Coleoptera: Chrysomelidae: Cassidinae), pp. 372–391, in D. Quintero Arias and A. Aiello (eds.). Insects of Panama and Mesoamerica: Selected Studies: Oxford University Press, Oxford.Google Scholar
  68. Zou, J., and Cates, R. G. 1997. Effects of terpenes and phenolic and flavonoid glycosides from Douglas fir on Western spruce budworm larval growth, pupal weight, and adult weight. J. Chem. Ecol. 23:2313–2326.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Nélida E. Gómez
    • 1
  • Ludger Witte
    • 2
  • Thomas Hartmann
    • 2
  1. 1.Smithsonian Tropical Research InstituteBalboaPanama
  2. 2.Institut für Pharmazeutische Biologie, Technische Universität BraunschweigBraunschweigGermany

Personalised recommendations