Skip to main content
Log in

Synthesis of AlPO4 Molecular Sieves with AFI and AEL Structures by Dry-Gel Conversion Method and Catalytic Application of Their SAPO Counterparts on Isopropylation of Biphenyl

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

AlPO4-5 and AlPO4-11 were synthesized by dry-gel conversion (DGC) method. Steam-assisted conversion (SAC) and vapor-phase transport (VPT) techniques were applied for this purpose. The synthesis was successful in presence of a certain minimum amount of external bulk water, without which the crystallization failed. Crystallization by VPT method was slower than corresponding SAC and HTS method. SAPO analogs of the samples, SAPO-5 and SAPO-11 were also synthesized by DGC method. Samples made by DGC methods had higher yield than the conventional hydrothermal synthesis (HTS); otherwise the samples showed similar characteristics as that made by HTS. XRD, SEM and N2-adsorption results showed high crystallinity and purity of the samples made by DGC, and 27Al MAS NMR spectra indicated the tetrahedral framework nature of Al. SAPO-5 and SAPO-11 were tested for their catalytic activity in isopropylation of biphenyl, and in terms of conversion and selectivity, SAPO-5 was found to be suitable for this application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.R.H.P. Rao and M. Matsukata, Chem. Commun. 1441 (1996).

  2. P.R.H.P. Rao, K. Ueyama, and M. Matsukata, Appl. Catal. 166, 97 (1998).

    Google Scholar 

  3. P.R.H.P. Rao, K. Ueyama, E. Kikuchi, and M. Matsukata, Chem. Lett. 311 (1998).

  4. P.R.H.P. Rao, C.A. Leyon y Leyon, K. Ueyama, and M. Matsukata, Micropor. Mesopor. Mater. 166, 97 (1998).

    Google Scholar 

  5. M. Matsukata, M. Ogura, T. Osaki, P.R.H.P. Rao, M. Nomura, and E. Kikuchi, Topics in Catal. 9, 77 (1999).

    Google Scholar 

  6. R. Bandyopadhyay, Y. Kubota, M. Ogawa, N. Sugimoto, Y. Fukushima, and Y. Sugi, Chem. Lett. 300 (2000).

  7. R. Bandyopadhyay, Y. Kubota, and Y. Sugi, Chem. Lett. 813 (1998).

  8. R. Bandyopadhyay, Y. Kubota, N. Sugimoto, Y. Fukushima, and Y. Sugi, Micropor. Mesopor. Mater. 32, 81 (1999).

    Google Scholar 

  9. T. Tatsumi, Q. Xia, and N. Jappar, Chem. Lett. 677 (1997).

  10. T. Tatsumi and N. Jappar, J. Phys. Chem. B. 102, 7126 (1998).

    Google Scholar 

  11. N. Jappar, Q. Xia, and T. Tatsumi, J. Catal. 180, 132 (1998).

    Google Scholar 

  12. A. Bhaumik and T. Tatsumi, Micropor. Mesopor. Mater. 34, 1 (2000).

    Google Scholar 

  13. W. Xu, J. Dong, J. Li, J. Li, and F. Wu, J. Chem. Soc., Chem. Commun. 755 (1990).

  14. J. Dong, T. Dou, X. Zhao, and L. Gao, J. Chem. Soc., Chem. Commun. 1056 (1992).

  15. M.H. Kim, H.X. Li, and M.E. Davis, Micropor. Mater. 1, 191 (1993).

    Google Scholar 

  16. M. Matsukata, N. Nishiyama, and K. Ueyama, Micropor. Mater. 1, 219 (1993).

    Google Scholar 

  17. T. Sano, Y. Kiyozumi, F. Mizukami, A. Iwasaki, M. Ito, and M. Watanabe, Micropor. Mater. 1, 353 (1993).

    Google Scholar 

  18. R. Althoff, K. Unger, and F. Schuth, Micropor. Mater. 2, 557 (1994).

    Google Scholar 

  19. M. Matsukata, N. Nishiyama, and K. Ueyama, J. Chem. Soc., Chem. Commun. 339 (1994).

  20. N. Nishiyama, K. Ueyama, and M. Matsukata, J. Chem. Soc., Chem. Commun. 1967 (1995).

  21. M. Matsukata, N. Nishiyama, and K. Ueyama, Micropor.Mater. 7, 109 (1996).

    Google Scholar 

  22. N. Nishiyama, K. Ueyama, and M. Matsukata, Micropor.Mater. 7, 299 (1996).

    Google Scholar 

  23. T. Takewaki, S.-J. Hwang, H. Yamashita, and M.E. Davis, Micropor. Mesopor. Mater. 32, 265 (1999).

    Google Scholar 

  24. E.M. Flanigen, B.M. Lok, R.L. Patton, and S.T. Wilson, Stud. Surf. Sci. Catal. 28, 103 (1986).

    Google Scholar 

  25. D.S. Sholl and K.A. Fichthorn, J. Chem. Phys. 107, 4384 (1997).

    Google Scholar 

  26. B.L. Newalkar, B.V. Kamath, R.V. Jasra, and S.G.T. Bhat, Zeolites 18, 286 (1997).

    Google Scholar 

  27. S.T. Wilson, B.M. Lok, C.A. Messina, T.R. Cannan, and E.M. Flanigen, US Patent 4 310 440 (1982).

  28. S.T. Wilson, B.M. Lok, C.A. Messina, T.R. Cannan, and E.M. Flanigen, J. Am. Chem. Soc. 104, 1146 (1982).

    Google Scholar 

  29. B.M. Lok, C.A. Messina, R.L. Patton, R.T. Gajek, T.R. Cannan, and E.M. Flanigen, J. Am. Chem. Soc. 106, 6092 (1984).

    Google Scholar 

  30. B.M. Lok, C.A. Messina, R.L. Patton, R.T. Gajek, T.R. Cannan, and E.M. Flanigen, US Patent 4 440 871 (1984).

  31. P.S. Singh, R. Bandyopadhyay, and B.S. Rao, Appl. Catal. 136, 177 (1996).

    Google Scholar 

  32. P.S. Singh, R. Bandyopadhyay, S.G. Hegde, and B.S. Rao, Appl. Catal. 136, 249 (1996).

    Google Scholar 

  33. T. Matsuda, T. Kimura, E. Herawati, C. Kobayashi, and E. Kikuchi, Appl. Catal. 136, 19 (1996).

    Google Scholar 

  34. Q. Huo and R. Xu, J. Chem. Soc., Chem. Commun. 783 (1990).

  35. Z. Zhao and R. Zhao, Zeolites 13, 634 (1993).

    Google Scholar 

  36. L. Zhang and G.R. Gavalas, Chem. Commun. 97 (1999).

  37. M. Bandyopadhyay, R. Bandyopadhyay, Y. Kubota, and Y. Sugi, Chem. Lett. 1024 (2000).

  38. L. Gora, K. Streletzky, R.W. Thompson, and G.D.J. Phillies, Zeolites 18, 119 (1997).

    Google Scholar 

  39. W. Bo and H. Ma, Micropor. Mesopor. Mater. 25, 131 (1998).

    Google Scholar 

  40. Q. Li, D. Creaser, and J. Sterte, Micropor. Mesopor. Mater. 31, 141 (1999).

    Google Scholar 

  41. S.T. Wilson, B.M. Lok, C.A. Messina, and E.M. Flanigen, in Proc. of 6th Intl. Zeolite Conf., edited by D.H. Olson and A. Bisio (Butterworth, Guildford, UK, 1984), p. 97.

  42. R. Szostak, Molecular Sieves, Principles of Synthesis and Identification (Van Nostrand Reinhold, New York, 1989).

    Google Scholar 

  43. M.R. Gelsthorpe and C.R. Theocharis, Catal. Today 2, 613 (1988).

    Google Scholar 

  44. N.J. Tapp, N.B. Milestone, and D.M. Bibby, Zeolites 8, 183 (1988).

    Google Scholar 

  45. C.S. Blackwell and R.L. Patton, J. Phys. Chem. 88, 6135 (1984).

    Google Scholar 

  46. E.M. Flanigen, R.L. Patton, and S.T. Wilson, Stud. Surf. Sci. Catal. 37, 13 (1988).

    Google Scholar 

  47. M. Popova, Ch. Minchev, and V. Kanazinev, Appl. Catal. 169, 227 (1998).

    Google Scholar 

  48. J.A. Martens, M. Machteld, P.J. Grobet, and P.A. Jacobs, Stud. Surf. Sci. Catal. 37, 97 (1988).

    Google Scholar 

  49. J.A. Martens and P.A. Jacobs, Stud. Surf. Sci. Catal. 85, 653 (1994).

    Google Scholar 

  50. Y. Sugi and Y. Kubota, in Catalysis, SpecialistPeriodical Report, edited by J.J. Spivey (Royal Society of Chemistry, 1997), vol. 13, ch. 3, p. 55.

  51. Y. Sugi, T.T. Matsuzaki, T. Hanaoka, Y. Kubota, J.H. Kim, X. Tu, and M. Matsumoto, Catal. Lett. 27, 315 (1994).

    Google Scholar 

  52. J.-H. Kim, T. Matsuzaki, T. Hanaoka, Y. Kubota, Y. Sugi, M. Matsumoto, and X. Tu, Micropor. Mater. 5, 113 (1995).

    Google Scholar 

  53. Y. Sugi, S. Tawada, T. Sugimura, Y. Kubota, T. Hanaoka, T. Matsuzaki, K. Nakajima, and K. Kunimori, Appl. Catal. 189, 251 (1999).

    Google Scholar 

  54. S. Tawada, Y. Kubota, Y. Sugi, T. Hanaoka, and T. Matsuzaki, Catal. Lett. 57, (1999) 217.

    Google Scholar 

  55. J. Chen, P.A. Wright, S. Natarajan, and J.M. Thomas, Stud. Surf. Sci. Catal. 84, 1731 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandyopadhyay, R., Bandyopadhyay, M., Kubota, Y. et al. Synthesis of AlPO4 Molecular Sieves with AFI and AEL Structures by Dry-Gel Conversion Method and Catalytic Application of Their SAPO Counterparts on Isopropylation of Biphenyl. Journal of Porous Materials 9, 83–95 (2002). https://doi.org/10.1023/A:1020816607626

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020816607626

Navigation