Skip to main content
Log in

Ingham-Beurling type theorems with weakened gap conditions

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Completing a series of works begun by Wiener [34], Paley and Wiener [28] and Ingham [9], a far-reaching generalization of Parseval"s identity was obtained by Beurling [4] for nonharmonic Fourier series whose exponents satisfy a uniform gap condition. Later this gap condition was weakened by Ullrich [33], Castro and Zuazua [5], Jaffard, Tucsnak and Zuazua [11] and then in [2] in some particular cases. In this paper we prove a general theorem which contains all previous results. Furthermore, applying a different method, we prove a variant of this theorem for nonharmonic Fourier series with vector coefficients. This result, partly motivated by control-theoretical applications, extends several earlier results obtained in [15] and [2]. Finally, applying these results we obtain an optimal simultaneous observability theorem concerning a system of vibrating strings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Avdonin and S. A. Ivanov, Families of Exponentials, Cambridge University Press (1995).

  2. C. Baiocchi, V. Komornik and P. Loreti, Ingham type theorems and applications to control theory, Boll. Un. Mat. Ital. B (8), II-B, n. 1, Febbraio 1999, 33–63.

    MathSciNet  Google Scholar 

  3. C. Baiocchi, V. Komornik and P. Loreti, Généralisation d'un théorème de Beurling et application à la théorie du contrôle, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 281–286.

    MATH  MathSciNet  Google Scholar 

  4. J. N. J. W. L. Carleson and P. Malliavin, editors, The Collected Works of Arne Beurling, Volume 2, Birkhäuser (1989).

  5. Castro and E. Zuazua, Une remarque sur les séries de Fourier non-harmoniques et son application à la contrôlabilité des cordes avec densité singulière, C. R. Acad. Sci. Paris Sér. I, 322 (1996), 365–370.

    Google Scholar 

  6. Coddington and Levinson, Theory of Ordinary Differential Equations, McGraw-Hill (New York, 1955).

    Google Scholar 

  7. K. D. Graham and D. L. Russell, Boundary value control of the wave equation in a spherical region, SIAM J. Control, 13 (1975), 174–196.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire, J. Math. Pures Appl., 68 (1989), 457–465.

    MATH  MathSciNet  Google Scholar 

  9. A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z., 41 (1936), 367–379.

    Article  MATH  MathSciNet  Google Scholar 

  10. E. Isaacson and H. B. Keller, Analysis of Numerical Methods, John Wiley and Sons (New York, 1966).

    Google Scholar 

  11. S. Jaffard, M. Tucsnak and E. Zuazua, On a theorem of Ingham, J. Fourier Anal. Appl., 3 (1997), 577–582.

    MATH  MathSciNet  Google Scholar 

  12. S. Jaffard, M. Tucsnak et E. Zuazua, Singular internal stabilization of the wave equation, J. Differential Equations, 145 (1998), 1, 184–215.

    Article  MATH  MathSciNet  Google Scholar 

  13. J.-P. Kahane, Pseudo-périodicité et séries de Fourier lacunaires, Ann. Sci. de l'E.N.S., 79 (1962), 93–150.

    MATH  MathSciNet  Google Scholar 

  14. V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson, Paris and John Wiley & Sons (Chicester, 1994).

    Google Scholar 

  15. V. Komornik and P. Loreti, Ingham type theorems for vector-valued functions and observability of coupled linear systems, SIAM J. Control Optim., 37 (1998), 461–485.

    Article  MathSciNet  Google Scholar 

  16. V. Komornik and P. Loreti, Partial observability of coupled linear systems, Acta Math. Hungar., 86 (2000), 49–74.

    Article  MATH  MathSciNet  Google Scholar 

  17. V. Komornik and P. Loreti, Observability of compactly perturbed systems, J. Math. Anal. Appl., 243 (2000), 409–428.

    Article  MATH  MathSciNet  Google Scholar 

  18. W. Krabs, On Moment Theory and Controllability of One-Dimensional Vibrating Systems and Heating Processes, Lecture Notes Control Information Sciences, vol. 173, Springer-Verlag (Berlin, 1992).

    Google Scholar 

  19. J. L. Lagnese and G. Leugering, Uniform stabilization of a nonlinear beam by nonlinear boundary feedback, J. Diff. Equations, 91 (1991), 355–388.

    Article  MATH  MathSciNet  Google Scholar 

  20. H. J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math., 117 (1967), 37–52.

    Article  MATH  MathSciNet  Google Scholar 

  21. I. Lasiecka and R. Triggiani, Regularity of hyperbolic quations under L 2 (0, T; L 2(Γ)) boundary terms, Appl. Math. Optim., 10 (1983), 275–286.

    Article  MATH  MathSciNet  Google Scholar 

  22. J.-L. Lions, Contrôle des systèmes distribués singuliers, Gauthiers-Villars (Paris, 1983).

    Google Scholar 

  23. J.-L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems, Siam Rev., 30 (1988), 1–68.

    Article  MATH  MathSciNet  Google Scholar 

  24. J.-L. Lions, Contrôlabilité exacte et stabilisation de systèmes distribués, Vol. 1, Masson (Paris, 1988).

    Google Scholar 

  25. P. Loreti and V. Valente, Partial exact controllability for spherical membranes, SIAM J. Control Optim., 35 (1997), 641–653.

    Article  MATH  MathSciNet  Google Scholar 

  26. Marczinkiewicz and A. Zygmund, Proof of a gap theorem, Duke Math. J., 4 (1938), 469–472.

    Article  MathSciNet  Google Scholar 

  27. N. K. Nikolskii, A Treatise on the Shift Operator, Springer (Berlin, 1986).

    Google Scholar 

  28. R. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc. Colloq. Publ., Vol. 19, Amer. Math. Soc. (New York, 1934).

    Google Scholar 

  29. G. Pólya and G. Szegő, Problems and Theorems in Analysis I–II, Springer (Berlin, 1972).

    Google Scholar 

  30. D. L. Russell, Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions, SIAM Rev., 20 (1978), 639–739.

    Article  MATH  MathSciNet  Google Scholar 

  31. K. Seip, On the connection between exponential bases and certain related sequences in l 2 (−π, π), J. Funct. Anal., 130 (1995), 131–160.

    Article  MATH  MathSciNet  Google Scholar 

  32. P. Turán, On an inequality, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 1 (1959), 3–6.

    Google Scholar 

  33. D. Ullrich, Divided differences and systems of nonharmonic Fourier series, Proc. Amer. Math. Soc., 80 (1980), 47–57.

    Article  MATH  MathSciNet  Google Scholar 

  34. N. Wiener, A class of gap theorems, Ann. Scuola Norm. Sup. Pisa (2), 3 (1934), 367–372.

    MATH  MathSciNet  Google Scholar 

  35. R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press (1980).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baiocchi, C., Komornik, V. & Loreti, P. Ingham-Beurling type theorems with weakened gap conditions. Acta Mathematica Hungarica 97, 55–95 (2002). https://doi.org/10.1023/A:1020806811956

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020806811956

Navigation