Skip to main content
Log in

Community and Ecosystem Level Consequences of Chemical Cues in the Plankton

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Aquatic organisms produce compounds that deter consumers, alter prey behavior, suppress or kill target and nontarget species, and dramatically affect food-web structure, community composition, and the rates and pathways of biogeochemical cycles. Toxins from marine and freshwater phytoplankton create health hazards for both aquatic and terrestrial species and can significantly affect human activities and the economic vitality of local communities. A reasonable case can be made that phytoplankton metabolites such as dimethyl sulfide (DMS) link interaction webs that span hundreds to thousands of kilometers and connect production from oceanic phytoplankton to desert cacti and coyotes via zooplankton, fishes, and sea birds. The possible role of DMS in global heat budgets expands this effect even further. The ecosystem-wide and potentially global consequences of aquatic chemical cues is an underappreciated topic that warrants additional attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Anderson, D. M. 1989. Toxic algal blooms and red tides: a global perspective pp. 11–16, in T. Okaichi, D. M. Anderson, and T. Nemoto (eds.). Red Tides: Biology, Environmental Science and Toxicology. Elsevier Science Publishing, New York.

    Google Scholar 

  • Anderson, D. M., Kaoru, Y., and White, A. W. 2000. Estimated Annual Economic Impacts from Harmful Algal Blooms (HABs) in the United States. Woods Hole Oceanographic Institute Technical Report WHOI-2000-11, 97 p.

  • Andreae, M. O. 1985. Dimethylsulfide in the water column and the sediment porewaters of the Peru upwelling area. Limnol. Oceanogr. 30:1208–1218.

    Google Scholar 

  • Bates, S. S., Bird, C. J., De Freitas, A. S. W., Foxall, R., Gilgan, M., Hanic, L. A., Johnson, G. R., Mcculloch, A. W., Odense, P., Pocklington, R., Quilliam, M. A., Sim, P. G., Smith, J. C., Subba Rao, D. V., Todd, E. C. D., Walter, J. A., and Right, J. L. C. 1989. Pennate diatom Nitzschia pungens as the primary source of domoic acid, a toxin in shellfish from eastern Prince Edward Island, Canada. Can. J. Fish. Aquat. Sci. 46:1203–1215.

    Google Scholar 

  • Bossart, G. D., Baden, D. G., Ewing, R. Y., Roberts, B., and Wright, S. D. 1998. Brevetoxicosis in manatees (Trichechus manatus latirostris) from the 1996 epizootic: Gross, histologic and immunohistochemical features. Toxicol. Pathol. 26:276–282.

    Google Scholar 

  • Bricelj, V. M., Twarog, B. M., MaCquarrie, S. P., Chang, P., and Trainer, V. L. 2000. Does the history of toxin exposure influence bivalve population responses to PSP toxins in Mya arenaria? (I) Burrowing and nerve responses. National Shellfisheries Association Abstracts, pp. 635–637.

  • Carpenter, S. R., Kitchel, J. F., and Hodgson, J. R. 1985. Cascading trophic interactions and lake productivity. BioScience 35:634–639.

    Google Scholar 

  • Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S.G. 1987. Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate: a geophysiological feedback. Nature 326:655–661.

    Google Scholar 

  • Chorus, I. (ed.) 2001. Cyanotoxins: Occurrence, Causes, Consequences. Springer-Verlag, Berlin.

    Google Scholar 

  • Christoffersen, K. 1996. Ecological implications of cyanobacterial toxins in aquatic food webs. Phycologia 36(6 Suppl.):42–50.

    Google Scholar 

  • De Meester, L., Dawidowicz, P., Van Gool, E., and Loose, C. J. 1999. Ecology and evolution of predator-induced behavior of zooplankton: Depth selection behavior and diel vertical migration, pp. 160–176, in R. Tollrian and C. D. Harvell (eds.). The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • DeMott, W. R. 1986. The role of taste in food selection by freshwater zooplankton. Oecologia 69:334–340.

    Google Scholar 

  • DeMott, W. R., Zhang, Q., and Carmichael, W.W. 1991. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnol. Oceanogr. 36:1346–1357.

    Google Scholar 

  • Duggins, D. O., Simenstad, C. A., and Estes, J. A. 1989. Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science 245:170–173.

    Google Scholar 

  • Estes, J. A. and Duggins, D. O. 1995. Sea otters and kelp forests in Alaska-generality and variation in a community ecological paradigm. Ecol. Monogr. 65:75–100.

    Google Scholar 

  • Gilbert, J. J. 1990. Differential effects of Anabaena affinis on cladocerans and rotifers: Mechanisms and implications. Ecology 71:1727–1740.

    Google Scholar 

  • Gunter, G., Williams, R. H., Davis, C. C., and Smith, F. G. W. 1948. Catastrophic mass mortality of marine animals and coincident phytoplankton bloom on the west coast of Florida, November 1946 to August 1947. Ecol. Monogr. 18:310–324.

    Google Scholar 

  • Hairston, N. G., Holtmeier, C. L., Lampert, W., Weider, L. J., Post, D. M., Fischer, J. M., Caceres, C. E., Fox, J. A., and Gaedke, U. 2001. Natural selection for grazer resistance to toxic cyanobacteria: evolution of phenotypic plasticity? Evolution 55:2203–2214.

    Google Scholar 

  • Hansson, L.-A. 1996. Behavioral response in plants: adjustment in algal recruitment induced by herbivores. Proc. R. Soc. London B. 263:1241–1244.

    Google Scholar 

  • Hay, M. E. 1996. Marine chemical ecology: what is known and what is next? J. Exp. Mar. Biol. Ecol. 200:103–134.

    Google Scholar 

  • Huntley, M., Sykes, P., Rohan, S., and Marin, V. 1986. Chemically-mediated rejection of dinoflagellate prey by the copepods Calanus pacificus and Paracalanus parvus: mechanism, occurrence and significance. Mar. Ecol. Prog. Ser. 28:105–120.

    Google Scholar 

  • Jochimsen, E. M., Carmichael, W. W., An, J. S., Cardo, D. M., Cookson, S. T., Holmes, C. E. M., Antunes, M. B. D., Demelo, D. A., Lyra, T. M., Barreto, V. S. T., Azevedo, S. M. F. O., and Jarvis, W. R. 1998. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N. Engl. J. Med. 338:873–878.

    Google Scholar 

  • Jones, R. I. 1993. Phytoplankton migrations: patterns processes and profits. Arch. Hydrobiol. Beih. 39:67–77.

    Google Scholar 

  • Keating, K. I. 1977. Allelopathic influence on blue-green bloom sequence in a eutrophic lake. Science 196:885–887.

    Google Scholar 

  • Kirk, K. L. and Gilbert, J. J. 1992. Variation in herbivore response to chemical defenses: zooplankton foraging on toxic cyanobacteria. Ecology 73:2208–2217.

    Google Scholar 

  • Kvitek, R. G. 1993. Paralytic shellfish toxins as a chemical defense in the butter clam (Saxidomus giganteus), pp. 407–412, in T. J. Smayda and Y. Shimizu (eds.). Toxic Phytoplankton Blooms in the Sea. Elsevier, Amsterdam.

    Google Scholar 

  • Lampert, W. 1982. Further studies on the inhibitory effect of the toxic blue-green Microcystis aeruginosa on the filtering rate of zooplankton. Arch. Hydrobiol. 95: 207–220.

    Google Scholar 

  • Longhurst, A. R. and Harrison, W. G. 1988. Vertical nitrogen flux from the oceanic photic zone by diel migrant zooplankton and nekton. Deep-Sea Res. 35:881–889.

    Google Scholar 

  • Longhurst, A. R., Bedo, A. W., Harrison, W. G., Head, E. A. H., and Sameoto, D. D. 1990. Vertical flux of respiratory carbon by oceanic diel migrant biota. Deep-Sea Res. 37:685–694.

    Google Scholar 

  • McClintock, J. B. and Baker, B. J. (eds.). 2001. Marine Chemical Ecology. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Miralto, A., Barone, G., Romano, G., Poulet, S. A., Ianora, A., Russo, G. L., Buttino, I., Mazzarella, G., Laabir, M., Cabrini, M., and Glaccobe, M. G. 1999. The insidious effect of diatoms on copepod reproduction. Nature 402:173–176.

    Google Scholar 

  • NRC (National Research Council). 1999. From Monsoons to Microbes: Understanding the Ocean's Role in Human Health. National Academy of Sciences, National Academy Press, Washington, DC. 132 pp.

    Google Scholar 

  • Nevitt, G. A. 2000. Olfactory foraging by Antarctic Procellariiform seabirds: life at high Renolds numbers. Biol. Bull. 198: 245–253.

    Google Scholar 

  • Nevitt, G. A., Veit, R. R., and Kareiva, P. 1995. Dimethyl sulfide as a foraging cue for Antarctic procellariiform seabirds. Nature 376:680–682.

    Google Scholar 

  • Olsgard, F. 1993. Do toxic algal blooms affect subtidal soft-bottom communities? Mar. Ecol. Prog. Ser. 102:269–286.

    Google Scholar 

  • Polis, G. A. and Hurd, S.D. 1996. Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am. Nat. 147:396–423.

    Google Scholar 

  • Porter, K. G. 1977. The plant–animal interface in freshwater ecosystems. Am. Sci. 65:159–170.

    Google Scholar 

  • Rengefors, K., Karlsson, I., and Hansson, L-A. 1998. Algal cyst dormancy: a temporal escape from herbivory. Proc. R. Soc. London B 265:1353–1358.

    Google Scholar 

  • Rose, M. D. and Polis, G. A. 1998. The distribution and abundance of coyotes: the effects of allochthonous food subsidies from the sea. Ecology 79:998–1007.

    Google Scholar 

  • Sanchez-Pinero, F. and Polis, G. A. 2000. Bottom-up dynamics of allochthonous input: direct and indirect effects of seabirds on islands. Ecology 81:3117–3132.

    Google Scholar 

  • Scholin, C. A., Gulland, F., Doucette, G. J., Benson, S., Busman, M., Chavez, F. P. Cordaro, J., Delong, R., Devogelaere, A., Harvey J., Haulena, M., Lefebre, K., Lipscomb, T., Loscutoff, S., Lowenstine, L. J., Marin, R., III, Miller, P. E., MCLellan W. A., Moeller, P. D. R., Powel, C. L., Rowles, T., Silvagni, P., Silver, M., Spraker, T., Trainer, V., and VanDolah, F.M. 2000. Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature 403:80–84.

    Google Scholar 

  • Shumway, S. E. 1990. A review of the effects of algal blooms on shellfish and aquaculture. J. World Aquacult. Soc. 21:65–105.

    Google Scholar 

  • Sieburth, J.M. 1960. Acrylic acid as an antibiotic principle in Phaeocystis blooms in Antarcticwaters. Science 132:676–677.

    Google Scholar 

  • Smayda, T. J. 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 42:1137–1153.

    Google Scholar 

  • Steidinger, K. A., Burklew, M. A., and Ingle, R.M. 1973. The effects of Gymnodinium breve toxin on estuary animals, pp. 179–202, in D. F. Martin and G. M. Padilla (eds.). Marine Pharmacognosy. Academic Press, New York.

    Google Scholar 

  • Sugg, L. M. and VanDolah, F. M. 1999. No evidence for an allelopathic role of okadaic acid among ciguatera-associated dinoflagellates. J. Phycol. 35:93–103.

    Google Scholar 

  • Teegarden, G. J. 1999. Copepod grazing selection and particle discrimination on the basis of PSP toxin content. Mar. Ecol. Prog. Ser. 181:163–176.

    Google Scholar 

  • Tester, P. A. and Fowler, P. K. 1990. Brevetoxin contamination of Mercenaria mercenaria and Crassostrea virginica: a management issue, pp. 499–503, in E. Graneli, B. Sundstron, L. Edler, and D. M. Anderson (eds.). Toxic Marine Phytoplankton. Elsevier Science Publishers, New York.

    Google Scholar 

  • Tester, P. A., Turner, J. T., and Shea, D. 2000. Vectorial transport of toxins from the dinoflagellate Gymnodinium breve through copepods to fish. J. Plankton Res. 22:47–62.

    Google Scholar 

  • Tollrian, R. and Harvell, C. D. (eds.). 1999. The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Turner, J. T. and Tester, P. A. 1997. Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limnol. Oceanogr. 42:1203–1214. 2016 HAY AND KUBANEK

    Google Scholar 

  • Van Donk, E., Lurling, M., and Lampert, W. 1999. Consumer-induced changes in phytoplankton: inducibility, costs, benefits, and the impact on grazers, pp. 89–103, in R. Tollrian and C. D. Harvell (eds.). The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Windust, A. J., Quilliam, M. A., Wright, J. L. C., and McLachlan, J. 1997. Comparative toxicity of the diarrhetic shellfish poisons, okadaic acid, okadaic acid diolester and dinophysistoxin-4, to the diatom Thalassiosira weissflogii. Toxicon 35:1591–1603.

    Google Scholar 

  • Windust, A. J., Wright, J. L. C., and McLachlan, J. L. 1996. The effects of the diarrhetic shellfish poisoning toxins, okadaic acid and dinophysistoxin-1, on the growth of microalgae. Mar. Biol. 126:19–25.

    Google Scholar 

  • Wolfe, G. V. 2000. The chemical defense ecology of marine unicellular plankton: constraints, mechanisms, and impacts. Biol. Bull. 198:225–244.

    Google Scholar 

  • Yasumoto, T. and Murata, M. 1993. Marine toxins. Chem. Rev. 93:1897–1909.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Hay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hay, M.E., Kubanek, J. Community and Ecosystem Level Consequences of Chemical Cues in the Plankton. J Chem Ecol 28, 2001–2016 (2002). https://doi.org/10.1023/A:1020797827806

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020797827806

Navigation