Skip to main content

An Absolute Viscometer-Densimeter and Measurements of the Viscosity of Nitrogen, Methane, Helium, Neon, Argon, and Krypton over a Wide Range of Density and Temperature

Abstract

An apparatus for the simultaneous measurement of viscosity and density of fluids is presented. The viscometer-densimeter covers a viscosity range up to 150 µPa⋅s and a density range up to 2000 kg⋅m−3 at temperatures from 233 to 523 K and pressures up to 30 MPa. Very accurate density measurements with uncertainties of ±0.02 to ±0.05% have always been carried out with this apparatus, although in its first version it was necessary to calibrate the viscosity measuring system on a reference fluid in order to achieve uncertainties of ±0.6 to ±1.0% in viscosity. After significant improvements, the apparatus now achieves uncertainties in viscosity of less than ±0.15% in the dilute gas region and less than ±0.4% for higher densities. Moreover, the viscosity measuring system can be described in an absolute way; calibration is no longer necessary. In order to test the advanced apparatus and to determine viscosity-density values of very high quality, comprehensive measurements on nitrogen, argon, and methane were carried out in the entire working range of the viscometer-densimeter. In addition, viscosity-density measurements on helium, neon, and krypton were made on two selected isotherms each. All measurements show that the estimated total uncertainty of ±0.15 to ±0.4% in viscosity and of ±0.02 to ±0.05% in density is clearly met. In order to verify the results of the combined viscometer-densimeter, a new apparatus for very accurate viscosity measurements was designed. While the working range of this apparatus is restricted to the dilute gas region, it yields uncertainties of less than ±0.07% in viscosity. Measurements carried out with this apparatus confirmed the previously measured values of the combined viscometer-densimeter within ±0.03%.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. A. H. Krall, J. C. Nieuwoudt, J. V. Sengers, and J. Kestin, Fluid Phase Equil. 36:207 (1987).

    Article  Google Scholar 

  2. A. A. H. Padua, J. M. N. A. Fareleira, J. C. G. Calado, and W. A. Wakeham, Int. J. Thermophys. 17:781 (1998).

    Google Scholar 

  3. F. Audonnet and A. A. H. Padua, Fluid Phase Equil. 181:147 (2001).

    Google Scholar 

  4. A. Docter, H. W. Lösch, and W. Wagner, Fortschr.-Ber. VDI-Z., Ser. 3, No. 494 (1997).

  5. A. Docter, H. W. Lösch, and W. Wagner, Int. J. Thermophys. 20:485 (1999).

    Google Scholar 

  6. H. W. Lösch, R. Kleinrahm, and W. Wagner, in Jahrbuch 1994 “Verfahrenstechnik und Chemieingenieurwesen”, VDI Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (VDI-Verlag, Düsseldorf, 1994), pp. 117–137.

    Google Scholar 

  7. W. Wagner, K. Brachthäuser, R. Kleinrahm, and H. W. Lösch, Int. J. Thermophys. 16:399 (1995).

    Google Scholar 

  8. W. Wagner, R. Kleinrahm, H. W. Lösch, and R. T. Watson, in IUPAC Experimental Thermodynamic, Vol. VI: Measurements of the Thermodynamic Properties of Single Phases, A. R. H. Goodwin, K. N. Marsh, and W. A. Wakeham, eds. (Elsevier, Amsterdam, 2002), in press.

    Google Scholar 

  9. V. Vasanta Ram, Eine Lösung der zeitabhängigen Navier-Stokes-Gleichungen für ein konzentrisches Zylindersystem (Arbeitsbericht des Lehrstuhls für Strömungsmechanik, Ruhr-Universität Bochum, 1996).

  10. K. Stephan, R. Krauss, and A. Laesecke, J. Phys. Chem. Ref. Data 16:993 (1987).

    Google Scholar 

  11. E. Vogel, Ber. Bunsenges. Phys. Chem. 88:997 (1984).

    Google Scholar 

  12. A. G. Clarke and E. B. Smith, J. Chem. Phys. 51:4156 (1969).

    Google Scholar 

  13. J. Kestin, S. T. Ro, and W. A. Wakeham, Ber. Bunsenges. Phys. Chem. 86:753 (1982).

    Google Scholar 

  14. J. Kestin, E. Paykoc, and J. V. Sengers, Physica 54:1 (1971).

    Google Scholar 

  15. J. H. B. Hoogland, H. R. van den Berg, and N. J. Trappeniers, Physica 134A:169 (1985).

    Google Scholar 

  16. J. A. Gracki, G. P. Flynn, and J. Ross, J. Chem. Phys. 51:3856 (1969).

    Google Scholar 

  17. G. P. Flynn, R. V. Hanks, N. A. Lemaire, and J. Ross, J. Chem. Phys. 38:154 (1963).

    Google Scholar 

  18. A. Michels and R. O. Gibson, Proc. Roy. Soc. A134:288 (1931).

    Google Scholar 

  19. B. Latto and M. W. Saunders, Can. J. Chem. Eng. 50:765 (1972).

    Google Scholar 

  20. D. E. Diller, Physica 119A:92 (1983).

    Google Scholar 

  21. B. A. Younglove and H. J. M. Hanley, J. Phys. Chem. Ref. Data 15:1323 (1986).

    Google Scholar 

  22. G. C. Maitland and B. E. Smith, J. Chem. Eng. Data 17:150 (1972).

    Google Scholar 

  23. J. Kestin, S. T. Ro, and W. A. Wakeham, J. Chem. Phys. 56:4119 (1972).

    Google Scholar 

  24. R. A. Dawe and E. B. Smith, J. Chem. Phys. 52:693 (1970).

    Google Scholar 

  25. A. G. Clarke and E. B. Smith, J. Chem. Phys. 48:3988 (1968).

    Google Scholar 

  26. J. Kestin and W. Leidenfrost, Physica 25:1033 (1959).

    Article  Google Scholar 

  27. J. Wilhelm and E. Vogel, Int. J. Thermophys. 21:301 (2000).

    Google Scholar 

  28. A. Michels, A. Botzen, and W. Schuurmann, Physica 20:1141 (1954).

    Google Scholar 

  29. W. M. Haynes, Physica 67:440 (1973).

    Google Scholar 

  30. J. Kestin and J. W. Whitelaw, Physica 29:335 (1963).

    Google Scholar 

  31. D. G. Friend, J. F. Ely, and H. Ingham, J. Phys. Chem. Ref. Data 18:583 (1989).

    Google Scholar 

  32. Y. Abe, J. Kestin, H. E. Khalifa, and W. A. Wakeham, Physica 93A:155 (1978).

    Google Scholar 

  33. J. Kestin and S. T. Ro, Ber. Bunsenges. Phys. Chem. 80:619 (1976).

    Google Scholar 

  34. D. E. Diller, Physica 104A:417 (1980).

    Google Scholar 

  35. J. G. Giddings, T. F. Kao, and R. Kobayashi, J. Chem. Phys. 45:578 (1966).

    Google Scholar 

  36. L. T. Carmichael, V. Berry, and B. H. Sage, J. Chem. Eng. Data 10:57 (1965).

    Google Scholar 

  37. J. J. Hurly and M. R. Moldover, J. Res. Nat. Inst. Stand. Tech. 105:667 (2000).

    Google Scholar 

  38. R. DiPippo and J. Kestin, Proc. Fourth Symp. Thermophys. Props. (ASME, New York, 1968), p. 304.

    Google Scholar 

  39. V. A. Rabinovich, A. A. Vassermann, V. I. Nedostup, and L. S. Veksler, Thermophysical Properties of Neon, Argon, Krypton, and Xenon, National Standard Reference Data Service of the USSR (Hemisphere Publishing, New York, 1988).

    Google Scholar 

  40. J. Kestin and A. Nagashima, J. Chem. Phys. 40:3648 (1964).

    Google Scholar 

  41. H. R. van den Berg, Precisiemetingen aan de Viscositeitscoefficient van Krypton en de logarithmische Term in de Dichtheidsontwikkeling. Dissertation (Universiteit van Amsterdam, 1979).

  42. N. J. Trappeniers, A. Botzen, J. van Ooosten, and H. R. van den Berg, Physica 31:945 (1965).

    Google Scholar 

  43. R. Span, E. W. Lemmon, R. T. Jacobsen, W. Wagner, and A. Yokozeki, J. Phys. Chem. Ref. Data 29:1361 (2000).

    Google Scholar 

  44. C. Tegeler, R. Span, and W. Wagner, J. Phys. Chem. Ref. Data 28:779 (1999).

    Google Scholar 

  45. R. D. McCarty and V. D. Arp, Adv. Cryog. Eng. 35:1465 (1990).

    Google Scholar 

  46. J. Juza and O. Šifner, Acta Tech. CSAV 1:1 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Evers, C., Lösch, H.W. & Wagner, W. An Absolute Viscometer-Densimeter and Measurements of the Viscosity of Nitrogen, Methane, Helium, Neon, Argon, and Krypton over a Wide Range of Density and Temperature. International Journal of Thermophysics 23, 1411–1439 (2002). https://doi.org/10.1023/A:1020784330515

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020784330515

  • argon
  • density
  • helium
  • krypton
  • magnetic suspension coupling
  • methane
  • neon
  • nitrogen
  • simultaneous viscosity and density measurement
  • single-sinker densimeter
  • viscometer
  • viscosity