Skip to main content
Log in

Amphetamine Increases Extracellular Concentrations of Glutamate in the Prefrontal Cortex of the Awake Rat: A Microdialysis Study

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Using microdialysis, the effect was investigated of intracerebral infusions of different doses of amphetamine (1.25, 2.5, 5, 10, and 20 μg/μl) on the extracellular concentrations of glutamate in the medial prefrontal cortex of the rat. Amphetamine produced a dose-related increase in extracellular concentrations of glutamate. At the highest dose, amphetamine increased extracellular glutamate by 445% of baseline as well as extracellular concentrations of taurine, and reduced extracellular concentrations of glutamine. Amphetamine did not modify other amino acids such as arginine. Increases in extracellular concentrations of glutamate and taurine were independent of calcium in the perfusion medium. This is the first study showing that amphetamine produces a calcium-independent increase in extracellular concentrations of glutamate and taurine in the medial prefrontal cortex of the rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Axelrod, J., Whitby, L. G., and Hertting, G. 1961. Effect of psychotropic drugs on the uptake of [3H]-Norepinephrine by tissues. Science 133:383-384.

    Google Scholar 

  2. Parker, E. M., and Cubeddu, L. X. 1986. Effects of d-amphetamine and dopamine synthesis inhibitors on dopamine and acetylcholine neurotransmission in the striatum. I. Release in the absence of vesicular transmitter stores. J. Pharmacol. Exp. Ther. 237:179-192.

    Google Scholar 

  3. Hernández, L., Lee, F., and Hoebel, B. 1987. Simultaneous microdialysis and amphetamine infusion in the nucleus accumbens and striatum of the freely moving rats: increase in extracellular dopamine and serotonin. Brain Res. Bull. 19:623-628.

    Google Scholar 

  4. Hurd, Y. L., Lindefors, N., Brodin, E., Brené, S., Persson, H., Ungerstedt, U., and Hokfelt, T. 1992. Amphetamine regulation of mesolimbic dopamine/cholecystokinin neurotransmission. Brain Res. 578:317-326.

    Google Scholar 

  5. Furmidge, L. J., Duggan, A. W., and Arbuthnott, G. W. 1993. Substance P release from rat nucleus accumbens and striatum: an in vivo study using antibody microprobes. Brain Res. 610:234-241.

    Google Scholar 

  6. Mora, F., and Porras, A. 1993. Effects of amphetamine on the release of excitatory amino acid neurotransmitters in the basal ganglia of the conscious rat. Can. J. Physiol. Pharmacol. 71:348-351.

    Google Scholar 

  7. Porras, A., and Mora, F. 1993. Dopamine receptor antagonist blocks the release of glycine, GABA, and taurine produced by amphetamine. Brain Res. Bull. 31:305-310.

    Google Scholar 

  8. Del Arco, A., Martínez, R., and Mora, F. 1994. Effects of intracerebral perfusion of amphetamine on the release of glutamic acid in the neostriatum of the conscious rat. Eur. J. Neurosci. Supp. 7:196.

    Google Scholar 

  9. Pierce, R. Ch., Clemens, A. J., Grabner, Ch. P., and Rebec, G. V. 1994. Amphetamine promotes neostriatal ascorbate release via a nigro-thalamo-cortico-neostriatal loop. J. Neurochem. 63:1499-1507.

    Google Scholar 

  10. Pintor, J., Porras, A., Mora, F., and Miras-Portugal, M. T. 1995. Dopamine receptor blockade inhibits the amphetamine-induced release of diadenosine polyphosphates, diadenosine tetraphosphates and diadenosine pentaphosphate, from neostriatum of the conscious rat. J. Neurochem. 64:670-676.

    Google Scholar 

  11. Nash, J. F., and Yamamoto, B. K. 1993. Effect of d-amphetamine on the extracellular concentrations of glutamate and dopamine in iprindole-treated rats. Brain Res. 627:1-8.

    Google Scholar 

  12. Xue, C. J., Ng, J. P., Li, Y., and Wolf, M. E. 1996. Acute and repeated systemic amphetamine administration: effects on extracellular glutamate, asparate, and serine levels in rat ventral tegmental area and nucleus accumbens. J. Neurochem. 67:352-363.

    Google Scholar 

  13. Peinado, J. M., and Mora, F. 1986. Glutamic acid as a putative transmitter of the interhemispheric corticocortical connections in the rat. J. Neurochem. 47:1598-1603.

    Google Scholar 

  14. Ottersen, O. P., and Storm-Mathisen, J. 1984. Glutamate-and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J. Comp. Neurol. 229:374-392.

    Google Scholar 

  15. Moroni, F., Corradetti, R., Casamenti, F., Moneti, G., and Pepeu, G. 1981. The release of endogenous GABA and Glutamate from cerebral cortex in the rat. Naunyn-Schmiederberg's Arch. Pharmacol. 316:235-239.

    Google Scholar 

  16. Stephans, S. E., and Yamamoto, B. K. 1996. Methamphetamine pretreatment and the vulnerability of the striatum to methamphetamine neurotoxicity. Neuroscience 72:593-600.

    Google Scholar 

  17. Stephans, S. E., and Yamamoto, B. K. 1995. Effect of repeated methamphetamine administrations on dopamine and glutamate efflux in rat prefrontal cortex. Brain Res. 700:99-106.

    Google Scholar 

  18. Konig, J. R. F., and Klippel, R. A. 1967. The rat brain, R. E. Krieger Publishing Co., New York.

    Google Scholar 

  19. Quan, N., and Blatteis, C. M. 1989. Microdialysis: a system localized drug delivery into the brain. Brain Res. Bull. 22:621-625.

    Google Scholar 

  20. Porras, A., and Mora, F. 1995. Dopamine-glutamate-GABA interactions and ageing: studies in the striatum of the conscious rat. Eur. J. Neurosci. 7:2183-2188.

    Google Scholar 

  21. Moghaddam, B., Roth, R. H., and Bunney, B. S. 1990. Characterization of dopamine release in the rat medial prefrontal cortex as assessed by in vivo microdialysis: comparison to the striatum. Neuroscience 36:669-676.

    Google Scholar 

  22. Van Eden, C. G., Hoorneman, E. M. D., Buijs, R. M., Matthijssen, M. A. H., Geffard, M., and Uylings, H. B. M. 1987. Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level. Neuroscience 22:849-862.

    Google Scholar 

  23. Penit-Soria, J., Audinat, E., and Crepel, F. 1987. Excitation of rat prefrontal cortical neurons by dopamine: an in vitro electrophysiological study. Brain Res. 425:263-274.

    Google Scholar 

  24. Mora, F., Sweeney, K. F., Rolls, E. T., Sanguinetti, A. M. 1976. Spontaneous firing rate of neurons in the prefrontal cortex of the rat: evidence for a dopaminergic inhibition. Brain Res. 116:516-522.

    Google Scholar 

  25. Pirot, S., Godbout, R., Mantz, J., Tassin, J. P., Glowinski, J., and Thierry, A. M. 1992. Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: evidence for the involvement of both dopaminegic and gabaergic components. Neuroscience 49:857-865.

    Google Scholar 

  26. Geijo-Barrientos, E., and Pastore, C. 1995. The effects of dopamine on the subthreshold electrophysiological responses of rat prefrontal cortex neurons in vitro. Eur. J. Neurosci. 7:358-366.

    Google Scholar 

  27. Bean, A. J., During, M. J., and Roth, R. H. 1989. Stimulation-Induced release of coexistent transmitter in the prefrontal cortex: An in vivo microdialysis study of dopamine and neurotensin release. J. Neurochem. 53:655-657.

    Google Scholar 

  28. Audinat, E., Hermel, J. M., and Crépel, F. 1989. Neurotensin-induced excitation of neurons of the rat's frontal cortex studied intracellularly in vitro. Exp. Brain Res. 78:358-368.

    Google Scholar 

  29. Sanz, B., Exposito, I., and Mora, F. 1993. Effects of neurotensin on the release of glutamic acid in the prefrontal cortex and striatum of the rat. NeuroReport 4:1194-1196.

    Google Scholar 

  30. Nicholls, D. G. 1993. The glutamatergic nerve terminal. Eur. J. Biochem. 212:613-631.

    Google Scholar 

  31. Westerink, B. C. H., Hofsteede, H. M., Damsma, G., and de Vries, J. B. 1988. The significance of extracellular calcium for the release of dopamine, acetylcholine and amino acids in conscious rats, evaluated by brain microdialysis. Naunyn-Schmiederberg's Arch. Pharmacol. 337:373-378.

    Google Scholar 

  32. Paulsen, R. E., and Fonnum, F. 1989. Role of glial cells for the basal and Ca2+-dependent k+-evoked release of transmitter amino acids investigated by microdialysis. J. Neurochem. 52:1823-1829.

    Google Scholar 

  33. Herrera-Marschitz, M., You, Z. B., Goiny, M., Meana, J. J., Silveira, R., Godukhin, O. V., Chen, Y., Espinoza, S., Pettersson, E., Loidl, C. F., Lubec, G., Anderson, K., Nylander, I., Terenius, L., and Ungerstedt, U. 1996. On the origin of extracellular glutamate levels monitored in the basal ganglia of the rat by in vivo microdialysis. J. Neurochem. 66:1726-1735.

    Google Scholar 

  34. Kerkerian, L., Dusticier, N., and Nieoullon, A. 1987. Modulatory effect of dopamine in high-affinity glutamate uptake in the rat striatum. J. Neurochem. 48:1301-1306.

    Google Scholar 

  35. Nieoullon, A., Kerkerian, L., and Dusticier, N. 1982. Inhibitory effects of dopamine on high affinity glutamate uptake from rat striatum. Life sciences 30:1165-1172.

    Google Scholar 

  36. Berman, S. B., and Hastings, T. G. 1997. Inhibition of glutamate transport in synaptosomes by dopamine oxidation and reactive oxygen species. J. Neurochem. 69:1185-1195.

    Google Scholar 

  37. Bradford, H. F., Ward, H. K., and Thomas, A. J. 1978. Glutaminea major substrate for nerve endings. J. Neurochem. 30:1453-1459.

    Google Scholar 

  38. Thanki, C. M., Sugden, D., Thomas, A. J., Bradford, H. F. 1983. In vivo release from cerebral cortex of [14C]glutamate synthesized from [U-14C]glutamine. J. Neurochem. 41:611-617.

    Google Scholar 

  39. Sherman, A. D., and Mott, J. 1985. Amphetamine stimulation of glutaminase is blocked by neuroleptics. Life Sci. 36:1163-1167.

    Google Scholar 

  40. Menéndez, N., Solís, J. M., Herreras, O., Herranz, A. S., and Del Rio, R. M. 1990. Role of endogenous taurine in the glutamate analogue-induced neurotoxicity in the rat hippocampus in vivo. J. Neurochem. 55:714-717.

    Google Scholar 

  41. Segovia, G., Del Arco, A., and Mora F. 1997. Endogenous glutamate releases dopamine, GABA, and taurine through NMDA and AMPA/Kainate receptors in striatum of the freely moving rat: a microdilaysis study. J. Neurochem. 69:1476-1483.

    Google Scholar 

  42. Shain, W., Madelian, V., Martin, D. L., Kimelberg, H. K., Perrone, M., and Lepore, R. 1986. Activation of B-adrenergic receptors stimulates release of an inhibitory transmitter from astrocytes. J. Neurochem. 46:1298-1303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Arco, A., Martínez, R. & Mora, F. Amphetamine Increases Extracellular Concentrations of Glutamate in the Prefrontal Cortex of the Awake Rat: A Microdialysis Study. Neurochem Res 23, 1153–1158 (1998). https://doi.org/10.1023/A:1020769816332

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020769816332

Navigation