Skip to main content
Log in

The Effects of N-Terminal Fragments of Immunophilin on Phospholipid Composition of Rat Brain and Human Erythrocyte Membranes

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Rat brain slices and human erythrocyte membranes have been incubated in the presence of water-soluble synthetic peptide fragments corresponding to residues 1–9 and 1–15 of the N-terminus of immunophilin and the effects on the phospholipid composition examined. During a 2 h incubation in the presence of 1 nM, 0.1 μM, and 10 μM concentrations of the peptides there were observed significant and dose-dependent decreases in the amounts of phosphatidylcholine and phosphatidylethanolamine, as well as increases in the amounts of phosphatidylserine and, to a less extent, phosphatidylinositol, cardiolipin and lysophosphatidylcholine. The overall decrease in the neutral phospholipids of rat brain, and no changes in human erythrocyte membranes with the simultaneous increase in the acidic phospholipids, both in brain and erythrocyte membranes, tended to counteract any changes in the phospholipid composition of the material studied. The results are discussed in terms of the possible effects of immunophilin on modulating phospholipid turnover in brain cell erythrocyte membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Radanyi, C., Chambrano, B., and Baulieu, E. E. 1994. The ability of the immunophilin FKBP139-HB1 to interact with the 90-kDa heat-shock protein is encoded by its tetratricopeptide repeat domain. Proc. NAS USA. 91:11197-11201.

    Google Scholar 

  2. Rouvierefourmy, N., Craescu, C. T., Mispeltier, J., Lebeau, M. C., and Baulieu, E. E. 1995. H-1 and N-15 assignment of NMR-spectrum secondary structure and global folding of the immunophilin-like domain of the 59 kDa FK506-binding protein. Eur. J. Biochem. 231:761-772.

    PubMed  Google Scholar 

  3. Czar, M. J., Owens-Grillo, J. K., Dittmar, K. D., Hutchison, K. A., Zacharek, A. M., Leach, K. L., Deibel, M. R., and Pratt, W. B. 1994. Characterization of the protein-protein interactions determining the heat-shook protein (HSP90, HSP70, HSP56) heterocomplex. J. Biol. Chem. 269:11155-11161.

    PubMed  Google Scholar 

  4. Czar, M. J., Owens-Grillo, J. K., Yem, A. W., Leach, K. L., Deibel, M. R., Welsh, M. J., and Pratt, W. B. 1994. The HSP56 immunophilin component of untransformed steroid-receptor complexes is localized both to microtubules in the cytoplasm and to the same nonrandom regions within the nucleus as the steroid receptor. Mol. Endocrin. 8:1731-1741.

    Google Scholar 

  5. Baughman, G., Wiederrecht, G. T., Campbell, N. F., Martin, M. M., and Bourgeois, S. 1995. FKBP51, a novel T-cell-specific immunophilin capable of calcineurine inhibition. Mol. Cell. Biol. 15:4395-4402.

    PubMed  Google Scholar 

  6. Owens-Grillo, J. K., Hoffmann, K., Hutchison, K. A., Yem, A. W., Deibel, M. R., Handschumacher, R. E., and Pratt, W. W. 1995. The cyclosporin A-binding immunophilin cyp-40 and the FK506-binding immunophilin HSP56 bind to a common site on HSP-90 and exist as independent cytosolic heterocomplexes with the untransformed glucocorticoid receptor. J. Biol. Chem. 270:20497-20484.

    PubMed  Google Scholar 

  7. Gurvits, B. Ya., and Galoyan, A. A. 1995. Structure and function of immunophilin, a receptor of immunosuppressant FK506, isolated from bovine hypothalamus. J.Neurochem. 65:S178D.

    Google Scholar 

  8. Belshaw, P. J., Meyer, S. D., Johnson, D. D., Romo, D., Ikeda, Y., Andrus, M., Alberg, D. G., Schultz, L. W., Clardy, J., and Schreiber, S. L. 1994. Synthesis, structure and mechanism in immunophilin research. Synlett. 6:381-392.

    Google Scholar 

  9. Lyons, W. E., Steiner, J. P., Snyder, S. H., and Dawson, T. M. 1995. Neuronal regeneration enhances the expression of the immunophilin FKBP12. J. Neurosci. 15:2985-2994.

    PubMed  Google Scholar 

  10. Limber, G. H., Davis, R. F., and Bakerman, S. 1970. Acrylamide gel electrophoresis. Studies of human erythrocyte membrane. J. Hematol. 36:111-121.

    Google Scholar 

  11. Folch, J., Lees, M., and Sloane-Stanley, G. H. 1957. A simple method for the isolation of total lipids from animal tissue. J. Biol. Chem. 226:497-507.

    PubMed  Google Scholar 

  12. Bartlett, G. R. 1959. Phosphorus assay in column chromatography. J. Biol. Chem. 234:466-468.

    PubMed  Google Scholar 

  13. Hasel, J. R. 1988. Homeoviscous adaptation in animal cell membranes. Pages 149-188, in Aloia, R. C., Curtain, C. C., and Gordon, L. M. (eds), Physiological Regulation of Membrane Fluidity, Alan R. Liss, New York.

    Google Scholar 

  14. Dawson, R. M. C., Irvine, R. F., Bray, J., and Quinn, P. J. 1984. Long-chain unsaturated diacilglycerols cause a perturbation of the structure of phospholipid bilayer rendering them sucseptible to phospholipase attack. Biochem. Biophys. Res. Commun. 125:836-842.

    PubMed  Google Scholar 

  15. Pelech, S. L., and Vance, D. E. 1989. Signal transduction via phosphatidylcholine cycles. Trends in Biochem. Sci. 14:28-30.

    Google Scholar 

  16. Asatryan, L. Yu. 1993. Cooperation of the lipid component modification processes in lymphocyte membranes under initiation of phosphoinositide cycle. 30 Pages. Autoreferat of dissertation for obtaining a degree of candidate for biological sciences. Yerevan, The Republic of Armenia.

  17. Tadevosyan, Yu. V. 1996. Cooperative processes of membranes lipid component in the regulation of cell activity. 41 Pages. Autoreferat of dissertation for obtaining a degree of doctor for biological sciences. Yerevan, The Republic of Armenia.

  18. Ning, Y. M., and Sanchez, E. R. 1995. Stabilization in vitro of the untransformed glucocorticoid receptor complex of S49 lymphocytes by the immunophilin ligand FK506. J. Ster. Biochem. and Mol. Biol. 52:187-194.

    Google Scholar 

  19. Alnemri, E. S., Fernande-Salmeri, T., Pomerenke, K., Robertson, N. M., Dudley K., Dubois, G. C., and Litwak, G. 1994. FKBP46, a novel SF9 insect cell nuclear immunophilin that forms a protein kinase complex. J. Biol. Chem. 269:30828-30834.

    PubMed  Google Scholar 

  20. Bang, H., Muller, W., Hans, M., Brunke, K., and Swandulla, D. 1995. Activation of Ca2+ signalling in neutrophils by the mast cell-released immunophilin FKBP12. PNAS USA. 92:3435-3438.

    PubMed  Google Scholar 

  21. Cameron, A. M., Steiner, J. P., Sabatini, D. M., Kaolan, A. L., Walensky, L. D., and Snyder, S. H. 1995. Immunophilin binding protein FK506 complex associated with inositol 1,4,5-tris phosphate receptor modulates calcium flux. PNAS USA. 92:1784-1788.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karageuzyan, K.G. The Effects of N-Terminal Fragments of Immunophilin on Phospholipid Composition of Rat Brain and Human Erythrocyte Membranes. Neurochem Res 24, 1161–1167 (1999). https://doi.org/10.1023/A:1020768605370

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020768605370

Navigation