Skip to main content
Log in

On the K + P Problem for a Three-Level Quantum System: Optimality Implies Resonance

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

We apply techniques of subriemannian geometry on Lie groups to laser-induced population transfer in a three-level quantum system. The aim is to induce transitions by two laser pulses, of arbitrary shape and frequency, minimizing the pulse energy. We prove that the Hamiltonian system given by the Pontryagin maximum principle is completely integrable, since this problem can be stated as a “kp problem” on a simple Lie group. Optimal trajectories and controls are exhausted. The main result is that optimal controls correspond to lasers that are “in resonance”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Agrachev and J. P. Gauthier, On the Dido problem and plane isoperimetric problems. Acta Appl. Math. 57 (1999), p. 287.

    Google Scholar 

  2. A. Agrachev and J. P. Gauthier, On the subanalyticity of Carnot-Carathéodory distances. Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2002), No. 3, 359–382.

    Google Scholar 

  3. A. Agrachev, Exponential mappings for contact subriemannian structures. J. Dynam. Control Systems 2 (1996), No. 3, 321–358.

    Google Scholar 

  4. A. Agrachev and A.V. Sarychev, Abnormal sub-Riemannian geodesics: Morse index and rigidity. Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 635–690.

    Google Scholar 

  5. C. Altafini, Controllability of quantum mechanical systems by root space decomposition of su(N). J. Math. Phys. 43 (2002), 2051–2062.

    Google Scholar 

  6. D. D'Alessandro and M. Dahleh, Optimal control of two-level quantum systems. IEEE Trans. Automat. Control 46 (2001), No. 6, 866–876.

    Google Scholar 

  7. A. Bellaiche, The tangent space in sub-Riemannian geometry. Sub-Riemannian geometry. Progr. Math., Birkhäuser, Basel (1996), 1–78.

  8. A. O. Barut and R. Raczka, Theory of group representations and applications. World Scientific, 1986.

  9. U. Boscain, Grégoire Charlot, Jean-Paul Gauthier, Stäphane Guärin, and Hans-Rudolf Jauslin, Optimal control in laser-induced population transfer for two-and three-level quantum systems. J. Math. Phys. 43 (2002), 2107–2132.

    Google Scholar 

  10. A. Borel and J. De Siebenthal, Les sous-groupes fermes de rang maximum des groupes de Lie clos. Comment. Math. Helv. 23 (1949), 200–221.

    Google Scholar 

  11. H. Chakir, J. P. Gauthier, and I. Kupka, Small subriemannian balls on R3. J. Dynam. Control Systems 2 (1996), No. 3, 359–421.

    Google Scholar 

  12. M.A. Daleh, A.M. Peirce, and H. Rabitz, Optimal control of quantummechanical systems: existence, numerical approximation, and applications. Phys. Rev. A 37 (1988).

  13. M. Gromov, Carnot-Carathéodory spaces seen from within. Sub-Riemannian geometry. In: Progr. Math. 144, Birkhäuser, Basel (1996) 79–323.

    Google Scholar 

  14. S. Helgason, Differential geometry, Lie groups, and symmetric spaces. Pure Appl. Math. 80 (1978).

  15. R. Hermann, Lie groups for physicists. Benjamin-Cummings, 1966.

  16. V. Jurdjevic, Geometric control theory. Cambridge Univ. Press, 1997.

  17. V. Jurdjevic, Optimal control, geometry, and mechanics. Mathematical control teory. (J. Bailleu, J. C. Willems (Eds.)), Springer (1999) 227–267.

  18. V. Jurdjevic, Hamiltonian point of view on non-Euclidean geometry and elliptic functions. System Control Lett. 43 (2001), 25–41.

    Google Scholar 

  19. V. Jurdjevic and H. J. Sussmann, Control systems on Lie groups. J. Differential Equations 12 (1972), 313–329.

    Google Scholar 

  20. N. Khaneja, R Brockett, and S. J. Glaser, Time optimal control in spin systems. Phys. Rev. A 63 (2001).

  21. R. Montgomery, A tour of subriemannian geometry. Amer. Math. Soc., Math. Surv. and Monogr., 2002. 572 U. BOSCAIN, T. CHAMBRION, and J.-P. GAUTHIER

  22. L. S. Pontryagin, V. Boltianski, R. Gamkrelidze, and E. Mishchenko, The mathematical theory of optimal processes. John Wiley and Sons, Inc. 1961.

  23. V. Ramakrishna, K. L. Flores, H. Rabitz, and R. Ober, Quantum control by decomposition of su(2). Phys. Rev. A 62 (2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boscain, U., Chambrion, T. & Gauthier, JP. On the K + P Problem for a Three-Level Quantum System: Optimality Implies Resonance. Journal of Dynamical and Control Systems 8, 547–572 (2002). https://doi.org/10.1023/A:1020767419671

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020767419671

Navigation