Skip to main content
Log in

Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In the indica rice (Oryza sativa L.) a cDNA was characterized that encoded OsAKT1 homologous to inward-rectifying potassium channels of the AKT/KAT subfamily. Transcript analysis located OsAKT1 predominantly in roots with low abundance in leaves. Cell-specificity of OsAKT expression was analyzed by in situ hybridizations. In roots, strongest signals were localized to the epidermis and the endodermis, whereas lower transcript levels were detected in cells of the vasculature and the cortex. In leaves, expression was detected in xylem parenchyma, phloem, and mesophyll cells. Transcriptional regulation and cell specificity of OsAKT1 during salt stress was compared in rice lines showing different salinity tolerance. In the salt-tolerant, sodium-excluding varieties Pokkali and BK, OsAKT1 transcripts disappeared from the exodermis in plants treated with 150 mM NaCl for 48 h but OsAKT1 transcription was not repressed in these cells in the salt-sensitive, sodium-accumulating variety IR29. Significantly, all lines were able to maintain potassium levels under sodium stress conditions, while sodium concentrations in the leaves of IR29 increased 5–10-fold relative to the sodium concentration in BK or Pokkali. The divergent, line-dependent and salt-dependent, regulation of this channel does not significantly affect potassium homeostasis under salinity stress. Rather, repression in Pokkali/BK and lack of repression in IR29 correlate with the overall tolerance character of these lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Ache, P., Becker, D., Deeken, R., Dreyer, I., Weber, H., Fromm, J. and Hedrich, R. 2001. VFK1, a Vicia faba K+ channel involved in phloem unloading. Plant J. 27: 571–580.

    Google Scholar 

  • Amtmann, A. and Sanders, D. 1999. Mechanisms of Na+ uptake by plant cells. Adv. Bot. Res. 29: 75–112.

    Google Scholar 

  • Anderson, J.A., Huprikar, S.S., Kochian, L.V., Lucas, W.J. and Gaber, R.F. 1992. Functional expression of a probable A. thaliana potassium channel in S. cerevisiae. Proc. Natl. Acad. Sci. USA 89: 3736–3740.

    Google Scholar 

  • Bauer, C.S., Hoth, S., Haga, K., Philippar, K., Aoki, N. and Hedrich, R. 2000. Differential expression and regulation of K(+) channels in the maize coleoptile: molecular and biophysical analysis of cells isolated from cortex and vasculature. Plant J. 24: 139–145.

    Google Scholar 

  • Blumwald, E., Aharon, G.S. and Apse, M.P. 2000. Sodium transport in plant cells. Biochim. Biophys. Acta 1465: 140–151.

    Google Scholar 

  • Buschmann, P.H., Vaidyanathan, R., Gassmann, W. and Schroeder, J.I. 2000. Enhancement of Na(+ ) uptake currents, timedependent inward-rectifying K(+ ) channel currents, and K(+ ) channel transcripts by K(+ ) starvation in wheat root cells. Plant Physiol. 122: 1387–1398.

    Google Scholar 

  • Cao, Y., Ward, J.M., Kelly, W.B., Ichida, A.M., Gaber, R.F., Anderson, J.A., Uozumi, N., Schroeder, J.I. and Crawford, N.M. 1995. Multiple genes, tissue specificity, and expressiondependent modulation contribute to the functional diversity of potassium channels in Arabidopsis thaliana. Plant Physiol. 109: 1093–1106.

    Google Scholar 

  • Chomczynski, P. and Sacci, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156–159.

    Google Scholar 

  • Deeken, R., Sanders, C., Ache, P. and Hedrich, R. 2000. Developmental and light-dependent regulation of a phloem-localised K+ channel of Arabidopsis thaliana. Plant J. 23: 285–290.

    Google Scholar 

  • Epstein, E., Rains, D.W. and Elzam, O.E. 1963. Resolution of dual mechanisms of potassium absorption by barley roots. Proc. Natl. Acad. Sci. USA 49: 684–692.

    Google Scholar 

  • Fu, H.H. and Luan, S. 1998. AtKUP1: A dual-affinity K+ transporter from Arabidopsis. Plant Cell 10: 63–73.

    Google Scholar 

  • Garcia, A., Senadhira, D., Flowers, T.J. and Yeo, A.R. 1995. The effects of selection for sodium transport and of selection for agronomic characteristics upon salt resistance in rice (Oryza sativa L.) Theor. Appl. Genet. 90: 1106–1111.

    Google Scholar 

  • Gassmann, W., Rubio, F. and Schroeder, J.I. 1996. Alkali ion selectivity of the wheat root high-affinity potassium transporter HKT1. Plant J. 10: 869–882.

    Google Scholar 

  • Gaymard, F., Pilot, G., Lacombe, B., Bouchez, D., Bruneau, D., Boucherez, J., Michaux-Ferriere, N., Thibaud, J.B. and Sentenac, H. 1998. Identification and disruption of a plant shakerlike outward channel involved in K+ release into the xylem sap. Cell 94: 647–655.

    Google Scholar 

  • Golldack, D. and Dietz, K.J. 2001. Salt-induced expression of the vacuolar H(+)-ATPase in the common ice plant is developmentally controlled and tissue-specific. Plant Physiol. 125: 1643–1654.

    Google Scholar 

  • Golldack, D., Kamasani, U.R., Quigley, F., Bennett, J. and Bohnert, H.J. 1997. Salt stress-dependent expression of a HKT1-type high affinity potassium transporter in rice. Plant Physiol. 114S: 529–529.

    Google Scholar 

  • Gustinich, S., Manfioletti, G., del Sal, G. and Schneider, C. 1991. A fast method for high quality genomic DNA extraction from whole human blood. Biotechniques 11: 298–302.

    Google Scholar 

  • Hartje, S., Zimmermann, S., Klonus, D. and Müller-Röber, B. 2000. Functional characterisation of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes. Planta 210: 723–731.

    Google Scholar 

  • Horie, T., Yoshida, K., Nakayama, H., Yamada, K., Oiki, S. and Shinmyo, A. 2001. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J. 27: 129–138.

    Google Scholar 

  • Kim, E.J., Kwak, J.M., Uozumi, N. and Schroeder, J.I. 1998. AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10: 51–62.

    Google Scholar 

  • Lacombe, B., Pilot, G., Michard, E., Gaymard, F., Sentenac, H. and Thibaud, J.B. 2000. A shaker-like K(+) channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell 12: 837–851.

    Google Scholar 

  • Lagarde, D., Basset, M., Lepetit, M., Conejero, G., Gaymard, F., Astruc, S. and Grignon, C. 1996. Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J. 9: 195–203.

    Google Scholar 

  • Maathuis, F.J.M., Ichida, A.M., Sanders, D. and Schroeder, J.I. 1997. Roles of higher plant K+ channels. Plant Physiol. 114: 1141–1149.

    Google Scholar 

  • Marten, I., Hoth, S., Deeken, R., Ache, P., Ketchum, K.A., Hoshi, T. and Hedrich, R. 1999. AKT3, a phloem-localized K+ channel, is blocked by protons. Proc. Natl. Acad. Sci. USA 96: 7581–7586.

    Google Scholar 

  • Müller-Röber, B., Ellenberg, J., Provart, N., Willmitzer, L., Busch, H., Becker, D., Dietrich, P., Hoth, S. and Hedrich, R. 1995. Cloning and electrophysiological analysis of KST1, an inward rectrifying K+ channel expressed in potato guard cells. EMBO J. 14: 2409–2416.

    Google Scholar 

  • Nakamura, R.L., McKendree, W.L., Hirsch, R.E., Sedbrook, J.C., Gaber, R.F. and Sussman, M.R. 1995. Expression of an Arabidopsis potassium channel gene in guard cells. Plant Physiol. 109: 371–374.

    Google Scholar 

  • Ostrem, J.A., Olson, S.W., Schmitt, J.M. and Bohnert, H.J. 1987. Salt stress increases the level of translatable mRNA for phosphoenolpyruvate carboxylase in Mesembryanthemum regenerates. Dev. Biol. 167: 239–251.

    Google Scholar 

  • Peterson, C.A. and Enstone, D.E. 1996. Functions of passage cells in the endodermis and exodermis of roots. Physiol. Plant. 97: 592–598.

    Google Scholar 

  • Philippar, K., Fuchs, I., Luthen, H., Hoth, S., Bauer, C.S., Haga, K., Thiel, G., Ljung, K., Sandberg, G., Bottger, M., Becker, D. and Hedrich, R. 1999. Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc. Natl. Acad. Sci. USA 96: 12186–12191.

    Google Scholar 

  • Quintero, F.J. and Blatt, M.R. 1997. A new family of K+-transporters from Arabidopsis that are conserved across phyla. FEBS Lett. 415: 206–211.

    Google Scholar 

  • Rigas, S., Debrosses, G., Haralampidis, K., Vicente-Agullo, F., Feldmann, K., Grabov, A., Dolan, L. and Hatzopoulos, P. 2001. Trh1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell 13: 139–151.

    Google Scholar 

  • Rubio, F., Gassmann, W. and Schroeder, J.I. 1995. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270: 1660–1663.

    Google Scholar 

  • Rubio, F., Santa-Maria, G.E. and Rodriguez-Navarro, A. 2000. Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol. Plant. 109: 34–43.

    Google Scholar 

  • Rus, A., Yokoi, S., Sharkuu, A., Reddy, M., Lee, B.H., Matsumoto, T.K., Koiwa, H., Zhu, J.K., Bressan, R.A. and Hasegawa, P.M. 2001. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc. Natl. Acad. Sci. USA 98: 14150–14155.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Santa-Maria, G.E., Rubio, F., Dubcovsky, J. and Rodgriguez-Navarro, A. 1997. The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9: 2281–2289.

    Google Scholar 

  • Schachtman, D. and Liu,W. 1999. Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci. 4: 281–287.

    Google Scholar 

  • Schachtman, D.P. and Schroeder, J.I. 1994. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370: 655–658.

    Google Scholar 

  • Schachtman, D.P., Schroeder, J.I., Lucas, W.J., Anderson, J.A. and Gaber, R.F. 1992. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science 258: 1654–1658.

    Google Scholar 

  • Schachtman, D.P., Kumar, R., Schroeder, J.I. and Marsh, E.L. 1997. Molecular and functional characterization of a novel low-affinity cation transporter (LCT1) in higher plants. Proc. Natl. Acad. Sci. USA 94: 11079–11084.

    Google Scholar 

  • Sentenac, H., Bonneaud, N., Minet, M., Lacroute, F., Salmon, J.M., Gaymard, F. and Grignon, C. 1992. Cloning and expression in yeast of a plant potassium ion transport system. Science 256: 663–665.

    Google Scholar 

  • Spalding, E.P., Hirsch, R.E., Lewis, D.R., Qi, Z., Sussman, M.R. and Lewis, B.D. 1999. Potassium uptake supporting plant growth in the absence of AKT1 channel activity: inhibition by ammonium and stimulation by sodium. J. Gen. Physiol. 113: 909–918.

    Google Scholar 

  • Su, H., Golldack, D., Katsuhara, M., Zhao, C. and Bohnert, H.J. 2001. Expression and stress-dependent induction of potassium channel transcripts in the common ice plant. Plant Physiol. 125: 604–614.

    Google Scholar 

  • Uozumi, N., Kim, E.J., Rubio, F., Yamaguchi, T., Muto, S., Tsuboi, A., Bakker, E.P., Nakamura, T. and Schroeder, J.I. 2000. The Arabidopsis HKT1 gene homolog mediates inward Na(+ ) currents in Xenopus laevis oocytes and Na(+ ) uptake in Saccharomyces cerevisiae. Plant Physiol. 122: 1249–1259.

    Google Scholar 

  • White, P.J. 1997. Cation channels in the plasma membrane of rye roots. J. Exp. Bot. 48: 499–514.

    Google Scholar 

  • White, P.J. 2001. The pathways of calcium movement to the xylem. J. Exp. Bot. 52: 891–899.

    Google Scholar 

  • Yeo, A.R., Yeo, M., Flowers, S.A. and Flowers, T.J. 1990. Screening of rice genotypes for physiological characters contributing to overall performance. Theor. Appl. Genet. 79: 377–384.

    Google Scholar 

  • Zimmermann, S. and Sentenac, H. 1999. Plant ion channels: from molecular structures to physiological functions. Curr. Opin. Plant Biol. 2: 477–482.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. Bohnert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golldack, D., Quigley, F., Michalowski, C.B. et al. Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Mol Biol 51, 71–81 (2003). https://doi.org/10.1023/A:1020763218045

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020763218045

Navigation