Skip to main content
Log in

Full Band Monte Carlo Simulation of Wurtzite AlGaN/GaN MODFETs

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We present full band Monte Carlo simulations of a wurtzite Al0.15Ga0.85N/GaN modulation-doped field-effect transistor (MODFET). We found that without inclusion of the piezoelectric effect, the electron concentrations in the channel are much lower than obtained from experimental data. The calculated I ds-V ds curves show a strong negative differential resistance, which is a feature observed in experimental devices. Self-heating effects are usually believed to be the main cause of the negative differential resistance. Our simulations do not include self-heating, and this would indicate that at least part of what is observed is also caused by the drift-velocity behavior vs. electric field of the narrow conduction channel. For a 0.2 μm gate MODFET, the simulations yield a maximum trans-conductance G m ≈ 250 mS/mm with V G = 1.0 V and V ds = 5.0 V. When V G = 0.0 V and V ds = 8.0 V, we obtain a maximum cutoff frequency f T = 180 GHz with I d = 1159 mA/mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht J.D., Ruden P.P., Binari S.C., and Ancona M.G. 2000. IEEE Trans. Electron Devices 47: 2031–2036.

    Google Scholar 

  • Bhapkar U.V. and Shur M.S. 1997. J. Appl. Phys. 82: 1649–1655.

    Google Scholar 

  • Burm J., Schaff W.J., Martin G.H. et al. 1997. Solid-State Electronics 41: 247–250.

    Google Scholar 

  • Chen Q., Yang J.W., and Gaska R. 1998. IEEE Electron Device Letters 19: 44–46.

    Google Scholar 

  • Dessenne F., Cichocka D., Desplanques P., and Fauquembergue F. 1997. Materials and Engineering B 50: 315–318.

    Google Scholar 

  • Farahmand M. and Brennan K.F. 1999. IEEETrans. Electron Devices 46: 1319–1325.

    Google Scholar 

  • Farahmand M. and Brennan K.F. 2000. IEEETrans. Electron Devices 47: 493–497.

    Google Scholar 

  • Gaska R., Chen Q., Yang J. et al. 1997. IEEE Electron Device Letters 18: 492–494.

    Google Scholar 

  • Kolnik J., Oguzman I.H., Brennan K.F. et al. 1995. J. Appl. Phys. 78: 1033–1037.

    Google Scholar 

  • O'Leary S.K., Foutz B.E., Shur M.S. et al. 1998. Solid State Comunications 105: 621–6260.

    Google Scholar 

  • Li R., Wong S.J., Chen Y. et al. 1999. IEEE Electron Device Letters 20: 323–325.

    Google Scholar 

  • Schmitz A.C., Ping A.T., Asifkhan M., and Adesida I. 1996. Mat. Res. Soc. Symp. Proc. 395: 831–835.

    Google Scholar 

  • Wu Y.F., Keller B.P., Keller S. et al. 1996. Appl. Phys. Lett. 69: 1438–1440.

    Google Scholar 

  • Wu S., Webster R.T., and Anwar F.M. 1999. Mat. Res. Symp. Proc. 537: G6.58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Ravaioli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, B., Ravaioli, U. Full Band Monte Carlo Simulation of Wurtzite AlGaN/GaN MODFETs. Journal of Computational Electronics 1, 309–311 (2002). https://doi.org/10.1023/A:1020762501762

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020762501762

Navigation