Skip to main content
Log in

Coframe Energy–Momentum Current. Algebraic Properties

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The coframe (teleparallel) description of gravity is known as a viable alternative to GR. One of advantages of this model is the existence of a conserved energy–momentum current witch is covariant under all symmetries of the three-parameter Lagrangian. In this paper we study the relation between the covector valued current and the energy–momentum tensor. Algebraic properties of the conserved current for different values of parameters are derived. It is shown that the tensor corresponding to the coframe current is traceless and, in contrast to the electromagnetic field, has in general a non vanishing antisymmetric part. The symmetric part is also non zero for all values of the parameters. Consequently, the conserved current involves the energy–momentum as well as the rotational (spin) properties of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hehl, F. W., Ne'eman, Y., Nitsch, J., and Von der Heyde, P. (1978). Phys. Lett. B 78, 102.

    Google Scholar 

  2. Hayashi, K. and Shirafuji, T. (1979). Phys. Rev. D 19, 3524–3553.

    Google Scholar 

  3. Hehl, F. W. (1979). In Proceedings of the 6th Course on Spin, Torsion and Supergravity, held at Erice, Italy, P. G. Bergmann and V. de Sabbata (Eds.) (Plenum, New York) p. 5.

    Google Scholar 

  4. Kawai, T. (1994). Phys. Rev. D, 49, 2862–2871; (2000). Phys. Rev. D 62, 104014.

    Google Scholar 

  5. Hehl, F. W., McCrea, J. D., Mielke, E. W., and Ne'eman, Y. (1995). Phys. Rep. 258, 1–171.

    Google Scholar 

  6. Muench, U., Gronwald, F., Hehl, F. W. (1998). Gen. Rel. Grav. 30, 933–961.

    Google Scholar 

  7. Itin, Y. (2001). Int. J. Mod. Phys. D 10, 547–573.

    Google Scholar 

  8. Fatibene, L., Ferraris, M., Francaviglia, M., and Godina, M. (1998). Gen. Rel. Grav. 30, 1371– 1389.

    Google Scholar 

  9. de Andrade, V. C., Guillen, L. C. T., and Pereira, J. G. (2000). Phys. Rev. Lett. 84, 4533–4536.

    Google Scholar 

  10. Itin, Y. (2002). Class. Quant. Grav. 19, 173–190.

    Google Scholar 

  11. Maluf, J. W. and da Rocha Neto, J. F. (1999). J. Math. Phys. 40, 1490–1503.

    Google Scholar 

  12. Blagojević, M. and Nikolić, I. A. (2000). Phys. Rev. 62, 024021.

    Google Scholar 

  13. Blagojević, M. and Vasilić, M. (2001). Phys. Rev. D 64, 044010.

    Google Scholar 

  14. Mielke, E. W. (1992). Ann. Phys. (New York) 219, 78–108.

    Google Scholar 

  15. Nester, J. M. and Tung, R. S. (1994). Phys. Rev. D 49, 3958–3962.

    Google Scholar 

  16. Hehl, F. W. and Obukhov, Yu. N. (2001). Preprint gr-qc/0103020.

  17. Hehl, F.W. and Obukhov, Yu. N. (2002). Foundations of Classical Electrodynamics (Birkhäuser, Boston).

    Google Scholar 

  18. Itin, Y. and Kaniel, S. (2000). J. Math. Phys. 41, 6318–6340.

    Google Scholar 

  19. Sezgin, E. and van Nieuwenhuizen, P. (1980). Phys. Rev. D 21, 3269.

    Google Scholar 

  20. Kuhfuss, R. and Nitsch, J. (1986). Gen. Rel. Grav. 18, 1207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itin, Y. Coframe Energy–Momentum Current. Algebraic Properties. General Relativity and Gravitation 34, 1819–1837 (2002). https://doi.org/10.1023/A:1020759923382

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020759923382

Navigation