Skip to main content
Log in

Influence of Myriophyllum spicatum-Derived Tannins on Gut Microbiota of Its Herbivore Acentria ephemerella

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The submerged living larvae of Acentria ephemerella were fed in the laboratory with either M. spicatum or Potamogeton perfoliatus, two of their host plants. Larvae exhibited a reduced growth when fed M. spicatum, a freshwater angiosperm that contains high concentrations of tannins, secondary metabolites known for their herbivore-deterrent and antimicrobial properties. In this study, we investigated the influence of food-derived tannins on gut microbiota. Bacterial densities in the guts did not differ between the food regimes, ranging from 2.8 to 13.3 × 106cells per gut. Gut bacteria were characterized with cultivation techniques and subsequent identification of the strains by molecular methods. We isolated 17 bacterial strains belonging to all subdivisions, i.e., we identified α-, β- and γ-proteobacteria, Cytophyaga/Flavobacteria (CF) and several Gram-positive bacteria. All except one Gram-positive strain were found in the guts of larvae fed with P. perfoliatus. Gram-positive bacteria and bacteria of the CF cluster were more sensitive to polyphenol-containing extracts of M. spicatum in an agar diffusion assay than strains of the α- or γ-proteobacteria subdivision. Our results suggest an influence of food-derived tannins on gut microbiota in A. ephemerella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Appel, H. M. 1993. Phenolics in ecological interactions: the importance of oxidation. J. Chem. Ecol. 19:1521–1552.

    Google Scholar 

  • Appel, H. M. and Martin, M. M. 1990. Gut redox conditions in herbivorous lepidopteran larvae. J. Chem. Ecol. 16:3277–3290.

    Google Scholar 

  • Appel, H. M. and Schultz, J. C. 1994. Oak tannins effectiveness of thuricide (Bacillus thuringiensis) in the gypsi moth (Lepidoptera. Lymantriidae). J. Econ. Entomol. 87:1736–1741.

    Google Scholar 

  • Barbehenn, R. V. and Martin, M. M. 1992. The protective role of the peritrophic membrane in the tannin-tolerant larvae of Orgya leucostigma (Lepidoptera). J. Insect Physiol. 38:973–980.

    Google Scholar 

  • Bernays, E. A. 1981. Plant tannins and insect herbivores: an appraisal. Ecol. Entomol. 6:353–360.

    Google Scholar 

  • Cazemier, A. E., Hackstein, J. H. P., Op Den Camp, H. J. M., Rosenberg, J., and Van Der Drift, C. 1997. Bacteria in the intestinal tract of different species of arthropods. Microbiol. Ecol. 33:189–197.

    Google Scholar 

  • Choi, C., Bareiss, C.,Walenciak, O., and Gross, E.M. 2002. Impact of polyphenols on the growth of the aquatic herbivore Acentria ephemerella (Lepidoptera: Pyralidae). J. Chem. Ecol. 28.

  • Clark, T. M. 1999. Evolution and adaptive significance of larval midgut alkalinization in the insect superorder Mecopterida. J. Chem. Ecol. 25:1945–1960.

    Google Scholar 

  • Collins, V. G. and Willoughby L. G. 1962. The disruption of bacterial and fungal spores in Blelham Tarn with particular reference to an experimental overturn. Arch. Microbiol. 43:294–307.

    Google Scholar 

  • Field, J. A. and Lettinga, G. 1992. Toxicity of tannic compounds to microorganisms, pp. 673–692 in R. W. Hemingway and P. E. Laks (eds.). Plant Polyphenols. Plenum Press, New York.

    Google Scholar 

  • Gross, E. M. 2000. Seasonal and spatial dynamics of allelochemicals in the submersed macrophyte Myriophyllum spicatum L. Verh. Int. Verein. Limnol. 27:2116–2119.

    Google Scholar 

  • Gross, E. M., Meyer, H., and Schilling, G. 1996. Release and ecological impact of algicidal hydrolyzable polyphenols in Myriophyllum spicatum. Phytochemistry 41:133–138.

    Google Scholar 

  • Gross, E. M., Johnson, R. L., and Hairston N. G., JR. 2001. Experimental evidence for changes in submersed macrophyte species composition caused by the herbivore Acentria ephemerella (Lepidoptera). Oecologia 127:105–114.

    Google Scholar 

  • Gross, E. M., Feldbaum, C., and Choi, C. 2002. High abundance of herbivorous Lepidoptera larvae (Acentria ephemerella Denis & Schifferm¨uller) on submersed macrophytes in Lake Constance (Germany). Arch. Hydrobiol. 155:1–21.

    Google Scholar 

  • Henis, Y., Tagari, H., and Volcani, R. 1964. Effect of water extract of carob pods, tannic acid, and their derivates on the morphology and growth of microorganisms. Appl. Microbiol. 12:204–210.

    Google Scholar 

  • Manuwoto, S. and Scriber, J.M. 1986. Effects of hydrolyzable and condensed tannin on growth and development of two species of polyphagous lepidoptera: Spodoptera eridania and Callosamia promethea. Oecologia 69:225–230.

    Google Scholar 

  • Muyzer, G. T., Hottentraeger, S., Teske, A., and Wawer, C. 1996. Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA-a new molecular approach to analyse the genetic diversity of mixed microbial communities, pp. 3.4.4:1–23 in A. D. L. Akkermans, J. D. van Elsas and F. J. de Bruijn (eds.). Molecular Microbial Ecology Manual, 2nd ed. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Muyzer, G. T., Brinkhoff, T., NÜubel, U., Santegoeds, C., SchÄfer, H., and Wawer, C. 1998. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology, pp. 3.4.4:1–27 in A. D. L. Akkermans, J. D. van Elsas, and F. J. de Bruijn (eds.). Molecular Microbial Ecology Manuel, 3rd ed. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Puupponen-Pimia, R., Nohynek, L., Meier, C., Kahkonen, M., Heinonen, M., Hopia, A., and Oksman-Caldentey, K.-M. 2001. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 90:494–507.

    Google Scholar 

  • Russell, V. W. and Dunn, P. E. 1991. Lysozyme in the midgut of Manduca sexta during metamorphosis. Arch. Insect Biochem. Physiol. 17:67–80.

    Google Scholar 

  • Scalbert, A. 1991. Antimicrobial properties of tannins. Phytochemistry 30:3875–3883.

    Google Scholar 

  • Schultz, J. C., Hunter, M. D., and Appel, H. M. 1992. Antimicrobial activity of polyphenols mediates plant-herbivore interactions, pp. 621–692 in R. W. Hemingway and P. E. Laks (eds.). Plant Polyphenols. Plenum Press, New York.

    Google Scholar 

  • Sher-Kaul, S., Oertli, B., Castella, E., and Lachavanne, J.-B. 1995. Relationship between biomass and surface area of six submerged aquatic plants species. Aquat. Bot. 51:147–154.

    Google Scholar 

  • Spencer, C. M., Cai, Y., Martin, R., Gaffney, S. H., Goulding, P. N., Magnolato, D., Lilley, T. H., and Haslam, E. 1988. Polyphenol complexation-Some thoughts and observations. Phytochemistry 27:2397–2409.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth M. Gross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walenciak, O., Zwisler, W. & Gross, E.M. Influence of Myriophyllum spicatum-Derived Tannins on Gut Microbiota of Its Herbivore Acentria ephemerella . J Chem Ecol 28, 2045–2056 (2002). https://doi.org/10.1023/A:1020754012785

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020754012785

Navigation