Skip to main content
Log in

Silica-Based and Transition Metal-Based Inorganic-Organic Hybrid Materials—A Comparison

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Organically substituted metal alkoxides can be prepared by reaction of the parent alkoxides with complexing organic compounds. The chemical and structural consequences of such substitutions are discussed in this article. Examples are given showing how functional organic moieties, such as polymerizable groups, can be incorporated into sol-gel materials via the complexing ligands. Major structural differences between silica-based and metal-based hybrid materials originate from the different charge/coordination number ratios of silicon and most metals. This results in a high tendency for the molecular building blocks to aggregate. In many cases, metal oxide clusters are formed which are capped by the organic ligands. Such surface-modified clusters are themselves very valuable condensed matter units for materials syntheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Livage, M. Henry, and C. Sanchez, Progr. Solid State Chem. 18, 259 (1988); C. Sanchez and J. Livage, New J. Chem. 14, 413 (1990).

    Google Scholar 

  2. G. Kickelbick and U. Schubert, Chem. Ber. 130, 473 (1997).

    Google Scholar 

  3. U. Schubert, N. Hüsing, and A. Lorenz, Chem. Mater. 7, 2010 (1995).

    Google Scholar 

  4. C. Sanchez, M. In P. Toledano, and P. Griesmar, Mat. Res. Soc. Symp. Proc. 271, 669 (1992)

    Google Scholar 

  5. R. Di Maggio, L. Fambri, and A. Guerriero, Chem. Mater. 10, 1777 (1998)

    Google Scholar 

  6. C. Sanchez and M. In, J. Non-Cryst. Solids 147/148, 1 (1992)

    Google Scholar 

  7. N. Miele-Pajot, L.G. Hubert-Pfalzgraf, R. Papiernik, J. Vaissermann, and R. Collier, J. Mater. Chem. 9, 3027 (1999)

    Google Scholar 

  8. U. Schubert, E. Arpac, W. Glaubitt, A. Helmerich, and C. Chau, Chem. Mater. 4, 291 (1992)

    Google Scholar 

  9. B. Moraru, N. Hüsing, G. Kickelbick, U. Schubert, P. Fratzl, and H. Peterlik, Chem. Mater. 14, 2732 (2002)

    Google Scholar 

  10. C. Barglik-Chory and U. Schubert, J. Sol-Gel Sci. Technol. 5, 135 (1995).

    Google Scholar 

  11. B. Breitscheidel, J. Zieder, and U. Schubert, Chem. Mater. 3, 559 (1991).

    Google Scholar 

  12. U. Schubert, S. Tewinkel, and F. Möller, Inorg. Chem. 34, 995 (1995); U. Schubert, S. Tewinkel, and R. Lamber, Chem. Mater. 8, 2047 (1996).

    Google Scholar 

  13. O. Metelkina and U. Schubert, unpublished.

  14. U. Schubert, New J. Chem. 18, 1049 (1994); E. Lindner, T. Schneller, F. Auer, and H.A. Mayer, Angew. Chem. Int. Ed. Engl. 111, 2289 (1999).

    Google Scholar 

  15. A. Lorenz and U. Schubert, Mat. Res. Soc. Symp. Proc. 435, 333 (1996); A. Lorenz, G. Kickelbick, and U. Schubert, Chem. Mater. 9, 2551 (1997).

    Google Scholar 

  16. T. Buck, H. Bohlen, D. Wöhrle, G. Schulz-Ekloff, and A. Andreev, J. Mol. Catal. 80, 253 (1993).

    Google Scholar 

  17. A.O. Ribeiro, J.C. Biazzotto, and O.A. Serra, J. Non-Cryst. Solids 273, 198 (2000).

    Google Scholar 

  18. U. Schubert, A. Lorenz, N. Kundo, T. Stuchinskaya, L. Gogina, A. Salanov, V. Zaikovskii, V. Maizlish, and G.P. Shaposhnikov, Chem. Ber. 130, 1585 (1997); T. Stuchinskaya, N. Kundo, L. Gogina, U. Schubert, A. Lorenz, and V. Maizlish, J. Mol. Catal. A 140, 235 (1999).

    Google Scholar 

  19. W. Rupp, N. Hüsing, and U. Schubert, J. Mater. Chem. 12 (2002).

  20. A. Sellinger and R.M. Laine, Chem. Mater. 8, 1592 (1996); J.J. Schwab and J.D. Lichtenhan, Appl. Organomet. Chem. 12, 707 (1998).

    Google Scholar 

  21. B. Moraru, S. Gross, G. Kickelbick, G. Trimmel, and U. Schubert, Monatsh. Chem. 132, 993 (2001).

    Google Scholar 

  22. For example: F. Ribot, P. Toledano, and C. Sanchez, Chem. Mater. 3, 759 (1991).

    Google Scholar 

  23. For example, P.H. Mutin, M. Mehring, G. Guerrero, and A. Vioux, Mat. Res. Soc. Symp. Ser. 628, CC2. 4. 1 (2000).

    Google Scholar 

  24. G. Trimmel, P. Fratzl, and U. Schubert, Chem. Mater. 12, 602 (2000); G. Trimmel, S. Gross, G. Kickelbick, and U. Schubert, U. Appl. Organomet. Chem. 15, 401 (2001); U. Schubert, G. Trimmel, B. Moraru, W. Tesch, P. Fratzl, S. Gross, G. Kickelbick, and N. H¨using, Mat. Res. Soc. Symp. Proc. 628, CC2. 3. 1 (2001).

    Google Scholar 

  25. F. Ribot and C. Sanchez, Comments Inorg. Chem. 20, 327 (1999); G. Kickelbick and U. Schubert, Monatsh. Chem. 132, 13 (2001); U. Schubert, Chem. Mater. 13, 3487 (2001).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schubert, U. Silica-Based and Transition Metal-Based Inorganic-Organic Hybrid Materials—A Comparison. Journal of Sol-Gel Science and Technology 26, 47–55 (2003). https://doi.org/10.1023/A:1020729100148

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020729100148

Navigation