Skip to main content

Advertisement

Log in

Adenoviruses Encoding HPRT Correct Biochemical Abnormalities of HPRT-Deficient Cells and Allow Their Survival in Negative Selection Medium

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The Lesch-Nyhan syndrome is an X-linked disorder caused by a virtually complete absence of the key enzyme of purine recycling, hypoxanthine-guanine phosphoribosyltransferase (HPRT). It is characterized by uric acid overproduction and severe neurological dysfunction. No treatment is yet available for the latter symptoms. A possible long-term solution is gene therapy, and recombinant adenoviruses have been proposed as vectors for gene transfer into postmitotic neuronal cells. We have constructed an adenoviral vector expressing the human HPRT cDNA under the transcriptional control of a short human cytomegalovirus major immediate early promoter (RAd-HPRT). Here we show that infection of human 1306, HPRT-negative cells with RAd-HPRT, expressed high enough levels of HPRT enzyme activity, as to reverse their abnormal biochemical phenotype, thus enhancing hypoxanthine incorporation and restoring purine recycling, increasing GTP levels, decreasing adenine incorporation, and allowing cell survival in HAT medium in which only cells expressing high levels of HPRT can survive. Infection of murine STO cells, increased hypoxanthine incorporation and restored purine recycling, thus allowing cell survival in HAT medium, and reduced de novo purine synthesis. Although both cells were able to survive in HAT medium post infection with RAd-HPRT, some of the biochemical consequences differed. In summary, even though adenoviral vectors do not integrate into the genome of target HPRT-deficient human or murine cells, RAd-HPRT mediated enzyme replacement corrects abnormal purine metabolism, increases intracellular GTP levels, and allows cells to survive in a negative selection medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bakay, B., Nissinen, E., Sweetman, L., Franke, U., and Nyhan, WL. (1979). Utilization of purines by an HPRT variant in an intelligent non-mutilative patient with features of Lesch-Nyhan syndrome. Ped. Res. 13:1365–1370.

    Google Scholar 

  • Castro, M., Goya, R., Sosa, Y., Rowe, J., Larregina, A., Morelli, A., and Lowenstein, P.R. (1997). Expression of transgenes in normal and neoplastic anterior pituitary cells using recombinant adenoviruses: long term expression, cell cycle dependency, and effects on hormone secretion. Endocrinology. 138:2184–2194.

    Google Scholar 

  • Cotten, M., Baker, A., Saltik, M., Wagner, E., and Buschle, M. (1994). Lipopopysaccharide is a frequent contamination of plasmid DNA preparations and can be toxic to primary human cells in the presence of adenovirus. Gene Ther. 1:239–246.

    Google Scholar 

  • Davidson, B.L., Doran, S.E., Shewach, D.S., Latta, J.M., Hartman, J.W., and Boessler, B.J. (1994). Expression of Escherichia coli-Galactosidase and rat HPRT in the CNS of Macaca mulatta following adenoviral mediated gene transfer. Exp. Neurol. 125:258–267.

    Google Scholar 

  • Dewey, R.A., Morrissey, G., Cowsill, C.M., Stone, D., Bolognani, F., Dodd, N.J.F., Southgate, T.D., Klatzmann, D., Lassmann, H., Castro, M.G., and Lowenstein, P.R. (1999). Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngeneic glioma treated by adenovirus-mediated gene therapy: implications for clinical trials. Nature Medicine 5:1256–1263.

    Google Scholar 

  • Dion, D. L., Fang, J., and Garver Jr., R. I. (1996). Supernatant rescue assay vs. polymerase chain reaction for detection of wild type adenovirus-contaminating recombinant adenovirus stocks. J. Virol. Meth. 56:99–107.

    Google Scholar 

  • Engle, S.J., Stockleman, M.G., Chen, J., Bolvin, G., Yum, M.N., Davies, P.M., Yin Ying, M., Sahota, A., Simmonds, H.A., Stambrook, P.J., and Tischfield, J.A. (1996a). Adenine phosphoribosyltransferase-deficient mice develop 2,8-dihydroxyadenine nephrolithiasis. Proc Natl Acad Sci U.S.A. 93:5307–5312

    Google Scholar 

  • Engle, S.J., Womer, D.E., Davies, P.M., Boivin, G., Sahota, A., Simmonds, H.A., Stambrook, P.J., and Tischfield, J.A. (1996b). HPRT-APRT-deficient mice are not a model for Lesch-Nyhan syndrome. Hum Molec Genet 5:1607–1610.

    Google Scholar 

  • Ernst, M., Zametkin, A.J., Matochik, J.A., Pasculavaca, D., Hons, P.H., Hardy, K., Hankerson, G., Doudet, D.J. and Cohen, R.M. (1996). Presynaptic dopaminergic deficits in Lesch-Nyhan disease New Eng. J. Med. 334:1568:1572.

    Google Scholar 

  • Fairbanks, L.D., Bofill, M., Ruckemann, K., and Simmonds, H.A. (1995). Importance of ribonucleotide availability to proliferating T-lymphocytes from healthy humans: disproportionate expansion of pyrimidine pools and contrasting effects of de novo synthesis inhibitors. J. Biol. Chem. 270:29682–29689.

    Google Scholar 

  • Friedmann, T., and Roblin, R. (1972). Gene therapy for human genetic disease. Science. 175:949–955.

    Google Scholar 

  • Harlow E, and Lane, D (1988). In Antibodies A Laboratory Manual. Cold Spring Harbour Laboratory, U.S.A., pp204–281.

    Google Scholar 

  • Harris, J., Lee, R., Jinnah, H., Wong, D., Yaster, M., and Bryan, R. (1998). Craniocerebral magnetic resonance imaging measurement and findings in Lesch-Nyhan syndrome. Arch. Neurol. 55:547–553.

    Google Scholar 

  • Hershfield, M.S., and Seegmiller, J.E., (1977). Regulation of de novo purine synthesis in human lymphoblasts. Similar rates of de novo purine synthesis during growth by normal cells and mutants deficient in hypoxanthine-guanine phosphoribosyltransferase. J. Biol. Chem. 252:6002–6010.

    Google Scholar 

  • Hooper, M., Hardy, K., Handyside, A., Hunter, S. and Monk, M. (1987). HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326:292–295.

    Google Scholar 

  • Huisman, W.H., Raivio, K.O., Becker, M.A. (1979). Simultaneous estimation of purine and pyrimidine synthesis de novo in cultured human cells. J Biol Chem 254:12595–12602

    Google Scholar 

  • Jinnah, H.A., Hess, E.J., Wilson, M.C., Gage, F.H., and Friedmann, T. (1992). Localization of hypoxanthine-guanine phosphoribosyltransferase mRNA in the mouse brain by in situ hybridization. Mol. Cell. Neurosci. 3:64–78.

    Google Scholar 

  • Jinnah, H.A., Wojcik, B.E., Hunt, M., Narang, N., Lee, K., Goldstein, M., Wamsley, J.K., Langlais, P.J., and Friedmann T. (1994). Dopamine deficiency in a genetic mouse model of Lesch-Nyhan disease. J. Neurosci. 14:1164–1175.

    Google Scholar 

  • Jolly, D.J., Okayama, H., Berg, P., Esty, A.C., Filpula, D., Bohlen, P., Johnson, G.G., Shively, J.E., Hunkapillar, T., and Friedmann T. (1983). Isolation and characterization of a full-length expressible cDNA for human hypoxanthine phosphoribosyltransferase. Proc. Natl Acad. Sci. 80:477–481

    Google Scholar 

  • Kelley, W. N. and Wyngaarden, J. B. (1983). In (Stanbury, J.B. Wyngaarden, Frederickson, M. Goldstein and Brown, eds) The Metabolic Basis of Inherited Disease 5th Edition. McGraw-Hill/U.S.A., New York. 1115pp.

    Google Scholar 

  • Kelley, W.N., Fox, I.H., and Wyngaarden, J.B. (1970). Essential role of phosphoribosylpyrophosphate (PPRP) in regulation of purine biosymthesis in cultured human fibroblasts. Clin. Res. 18:457–465.

    Google Scholar 

  • Lesch, M., and Nyhan, W.L. (1964). A familial disorder of uric acid metabolism and central nervous system function. Am. J. Med. 36:561–570

    Google Scholar 

  • Lloyd, K.G., Hornykiewicz, O., Davidson, L., Shannak, K., Farley, I., Goldstein, M., Shibuya, M., Kelley, W.N., and Fox, I.H. (1981). Biochemical evidence of dyfunction of brain transmitters in the Lesch-Nyhan syndrome. New Eng. J. Med. 305:1106–1111

    Google Scholar 

  • Lowenstein, P.R. Shering, A.F., Bain, D., Castro, M.G., and Wilkinson, G.W.G. (1996a). In (P.R. Lowenstein, and L.W. Enquist, eds) Protocols for Gene Transfer In Neuroscience: Towards Gene Therapy of Neurological Disorders. Chichester: John Wiley and Sons. pp.93–114.

    Google Scholar 

  • Lowenstein, P.R., Wilkinson, G.W.G., Castro, M.G., Shering, A.F., Fooks, A., and Bain, D. (1996b). In (D.S. Latchman, ed) Genetic Manipulation of the Nervous System. London: Academic Press. pp.11–40.

    Google Scholar 

  • Lowry, R.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951). Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  • Marz, R., Wohlhueter, M., and Plagemann, P.G.W. (1979). Purine and pyrimidine transport and phosphorylation and their interaction in overall uptake by cultured mammalian cells. A Reevaluation. J. Biol. Chem. 254:2329–2338.

    Google Scholar 

  • Miller, A.D., Jolly, D., Friedmann, T., and Verma, I.M. (1983). A transmissible retrovirus expressing human hypoxanthine phosphoribosyltransferase (HPRT): gene transfer into cells obtained from humans deficient in HPRT. Proc. Natl. Acad. Sci. U.S.A. 80:4709–4713.

    Google Scholar 

  • Miller, A.D., Eckner, R.J., Jolly, D., and Friedmann, T. (1984). Expression of a retrovirus encoding human HPRT in mice. Science. 225:630–632

    Google Scholar 

  • Monk, M. (1991) In (M. Monk, ed) Mammalian Development: A practical approach... Oxford: IRL Press. pp.139–161.

    Google Scholar 

  • Morelli, A., Larregina, A., Smith, J., Dewey, R., Southgate, T., Fontana, A., Castro M.G., and Lowenstein, P.R. (1999). Reduced systemic toxicity of recombinant adenovirus vectors expressing the Apoptotic molecule Fas-L driven by cell-type specific promoters. J. Gen. Virol. 80:571–583.

    Google Scholar 

  • Müller, M.M., Kraup, M., Chiba, P., and Rumpold, H. (1982). Regulation of purine uptake in normal and neoplastic cells. Adv. Enzyme. Reg. 20:239–256.

    Google Scholar 

  • Nyhan, W., Parkman, R., Page, T., Gruber, H., Pyati, J., Jolly, D., and Friedmann, T. (1986). Bone marrow transplantation in Lesch-Nyhan disease. Adv Exp Med Biol. 195:167–170.

    Google Scholar 

  • Page, T., Bakay, B., and Nyhan, W.L. (1984). Kinetic studies of hypoxanthine-guanine phosphoribosyltransferase in intact cells. Adv Exp Med Biol. 165B:27–31.

    Google Scholar 

  • Palella, T., Silverman, L., Schroll, C., Homa, F., Levine, M., and Kelley, W. (1988). Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells. Mol. Cell Biol. 8:457–460.

    Google Scholar 

  • Palella, T.D., Hidaka, Y., Silverman, L.J., Levine, M., Glorioso, J., and Kelley, W.N. (1989). Expression of human HPRT mRNA in brains of mice infected with a recombinant herpes simplex virus-1 vector. Gene 80:137–144.

    Google Scholar 

  • Plumb, T.J., Bosch, A., Roessler, B.J., Shewach, D.S., and Davidson, B.L. (1996). Hypoxanthine-guanine phosphoribosyltransferase (HPRT) expression in the central nervous system of HPRT-deficient mice following adenoviral-mediated gene transfer. Neurosci. Lett. 214:159–162.

    Google Scholar 

  • Redhead, N., Selfridge, J., Wu, C., and Melton, D. (1996). Mice with adenine phosphoribosyltransferase deficiency develop fatal 2,8-dihydroxyadenine lithiasis. Human Gene Therapy. 7:1491–1502.

    Google Scholar 

  • Rossiter, B.J.F., and Caskey, C.T. (1995). In (C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle, eds), The Metabolic and Molecular Basis of Inherited Disease, 7th Edition. New York: McGraw Hill, pp.1679–1707.

    Google Scholar 

  • Rückemann K, Fairbanks, L.D., Carrey, E.A., Harywlowicz, K., Richards, D., Kirschbaum, B., and Simmonds, H.A. (1998). Leflunomide inhibits pyrimidine de novo synthesis in mitogen-stimulated T-lymphocytes from healthy humans. J Biol Chem 273:21682–21691.

    Google Scholar 

  • Sculley, D.G., Dawson, P.A., Emmerson, B.T., and Gordon R.B. (1992). A review of the molecular basis of hypoxanthine-guaninephosphoribosyltransferase (HPRT) deficiency. Human Genetics. 90:195–207.

    Google Scholar 

  • Seegmiller, J.E., Rosenbloom, F.M., and Kelley, W.N. (1967). Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science 155:1682–1684.

    Google Scholar 

  • Shering, A.F., Bain, D., Stewart, K.S., Epstein, A.L., Castro, M.G., Wilkinson, G.W.G., and Lowenstein, P.R. (1997). Cell-type specific expression in brain cell cultures from a short human cytomegalovirus major immediate early promoter depends on whether it is inserted into herpesvirus or adenovirus vectors. J. Gen. Virol. 78:445–459.

    Google Scholar 

  • Simmonds, H.A., Duley, J.A., and Davies, P.M. (1991). In (F. Hommes, ed) Techniques in Diagnostic Human Biochemical Genetics: A laboratory Manual. New York: Wiley-Liss. pp.397–424.

    Google Scholar 

  • Simmonds, H.A., Fairbanks, L.D., Morris, G.S., Webster, D.R., and Harley, E.H. (1988). Altered erythrocyte nucleotide patterns are characteristic of inherited disorders of purine and pyrimidine metabolism. Clin Chim Acta 171:197–210.57.

    Google Scholar 

  • Simmonds, H.A., Reiter, S., and Nishino, T. (1995). In (C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle, eds) The Metabolic and Molecular Basis of Inherited Disease, 7 th Edition. New York: McGraw Hill. pp.1781–1797.

    Google Scholar 

  • Sperling, O. (1977). In Purine and Pyrimidine Metabolism. Ciba Foundation Symposium 48 (New Series). Amsterdam: Elsevier, pp.347–355.

    Google Scholar 

  • Thompson, S., Clarke, A., Pow, A., Hooper, M., and Melton, D. (1989). Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell. 56:313–321.

    Google Scholar 

  • Watts, R.W.E. (1985). Defects of tetrabiopterin synthesis and their possible relationship to a disorder of purine metabolism (the Lesch-Nyhan syndrome). Adv Enz Reg. 23:25–58.

    Google Scholar 

  • Wilkinson, G.W.G., and Akrigg, A. (1992). Constitutive and enhanced expression from the CMV major IE-promoter in a defective adenovirus vector. Nucl. Acid. Res. 20:2233–2239

    Google Scholar 

  • Willis, R.C., Jolly, D.J., Miller, A.D., Plent, M.M., Esty, A.C., Anderson, P.J., Chang, H.C., Jones, O.W., Seegmiller, J.E., and Friedmann, T. (1984). Partial phenotypic correction of human Lesch-Nyhan (hypoxanthine-guanine phosphoribosyltransferase-dificient) lymphoblasts with a transmissible retorviral vector. J. Biol. Chem. 259:7842–7849.

    Google Scholar 

  • Wong, D.F., Harris, J.C., Naidu, S., Yokoi, F., Marenco, S., Dannals, R.F., Ravert, H.T., Yaster, M., Evans, A., Rousset, O., Bryan RN, Gjedde A, Kuhar MJ., and Breeze GR. (1996). Dopamine transporters are markedly reduced in Lesh-Nyhan disease in vivo. Proc. Natl. Acad. Sci. 93:5539–5543.

    Google Scholar 

  • Wu, C.L., and Melton, D.W. (1993). Production of a model for Lesch-Nyhan syndrome in hypoxanthine phosphoribosyltransferase-deficient mice. Nat. Gen. 3:235–240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro R. Löwenstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Southgate, T.D., Bain, D., Fairbanks, L.D. et al. Adenoviruses Encoding HPRT Correct Biochemical Abnormalities of HPRT-Deficient Cells and Allow Their Survival in Negative Selection Medium. Metab Brain Dis 14, 205–221 (1999). https://doi.org/10.1023/A:1020728924026

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020728924026

Navigation