Skip to main content
Log in

Impact Ionization in GaAs within A Screened Exchange Density Functional Formalism

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We present the results of a fully first-principles calculation of impact ionization rates in GaAs within the density functional theory formalism, using a screened-exchange approach and the highly accurate all-electron full-potential linearized augmented plane wave (FLAPW) method. The calculated impact ionization rates show a marked orientation dependence in k space, indicating the strong restrictions imposed by the conservation of energy and momentum. This anisotropy diminishes as the impacting electron energy increases. A Keldysh type fit performed on the energy-dependent rate shows a rather soft edge and a threshold energy greater than the direct band gap. The consistency with available Monte Carlo and empirical pseudopotential calculations shows the reliability of our approach and paves the way to ab-initio calculations of pair production rates in new and more complex materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asahi R., Mannstadt W., and Freeman A.J. 1999. Phys. Rev. B 59: 7486.

    Google Scholar 

  • Brennan K.F. 1999. The Physics of Semiconductors. Cambridge University Press, Cambridge.

    Google Scholar 

  • Bude J. and Hess K. 1992. J. Appl. Phys. 72: 3554.

    Google Scholar 

  • Bylander B.M. and Kleinman L. 1990. Phys. Rev. B 41: 7868.

    Google Scholar 

  • Cappellini G., Del Sole R., Reining L., and Bechstedt F. 1993. Phys. Rev. B 47: 9892.

    Google Scholar 

  • Cohen M.L. and Bergstrasser T.K. 1966. Phys. Rev. 141: 789.

    Google Scholar 

  • Geller C.B., Wolf W., Picozzi S., Continenza A., Asahi R., Mannstadt W., Freeman A.J., and Wimmer E. 2001. Appl. Phys. Lett. 78: 368.

    Google Scholar 

  • Harrison D., Abram R.A., and Brand S. 1999. J. Appl. Phys. 85: 8186.

    Google Scholar 

  • Hohenberg P. and Kohn W. 1964. Phys. Rev. 136: B864.

    Google Scholar 

  • Humphreys T.P. and Srivastava G.P. 1982. Phys. Stat. Sol. 112: 581.

    Google Scholar 

  • Jung H.K., Taniguchi K., and Hamaguchi C. 1996. J. Appl. Phys. 79(5): 2473.

    Google Scholar 

  • Kohn W. and Sham L.J. 1965. Phys. Rev. 140: A1113.

    Google Scholar 

  • Landsberg P.T. 1991. Recombination in Semiconductors. Cambridge University Press, Cambridge.

    Google Scholar 

  • Picozzi S., Asahi R., Geller C.B., Continenza A., and Freeman A.J. 2002. Phys. Rev. B 65: 113206.

    Google Scholar 

  • Sano N. and Yoshii A. 1992. Phys. Rev. B 45: 4171.

    Google Scholar 

  • Seidl A., Gorling A., Vogl P., Majewski J.A., and Levy M. 1996. Phys. Rev. B 53: 3764.

    Google Scholar 

  • Stobbe M., Redmer R., and Schattke W. 1994. Phys. Rev. B 49: 4494.

    Google Scholar 

  • Wang Y. and Brennan K. 1992. J. Appl. Phys. 71: 2736.

    Google Scholar 

  • Wimmer E., Krakauer H., Weinert M., and Freeman A.J. 1981. Phys. Rev. B 24: 864.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picozzi, S., Asahi, R., Geller, C. et al. Impact Ionization in GaAs within A Screened Exchange Density Functional Formalism. Journal of Computational Electronics 1, 421–424 (2002). https://doi.org/10.1023/A:1020728414482

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020728414482

Navigation