Skip to main content

Scalar Soliton in Newtonian Gravity Modelling Dark Matter Halos

Abstract

Within standard Newtonian gravity, galactic dark matter is modelled by a scalar field in order to effectively modify Kepler's law. In particular, we show that a solvable toy model with a self-interaction U(Φ) borrowed from non-topological solitons produces already qualitatively correct rotation curves. Although relativistic effects in the halo are very small, we indicate corrections arising from the general relativistic formulation.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. [1]

    Zwicky, F. (1993). Helv. Phys. Acta 6, 110.

    Google Scholar 

  2. [2]

    Kochanek, C. S. (1996). Astrophys. J. 457, 228.

    Google Scholar 

  3. [3]

    Zaritzky, D., Smith, R., Frenk, C. S., and White, S. D. M. (1996). Preprint astro-ph/9611199.

  4. [4]

    Persic, M., Salucci, P., and Stel, F. (1996). Mon. Not. R. Astr. Soc. 281, 27.

    Google Scholar 

  5. [5]

    Sciama, D.W. (1993). Modern Cosmology and the Dark Matter Problem (Cambridge University Press, Cambridge).

    Google Scholar 

  6. [6]

    Smith, R. (1995). Observational Astrophysics (Cambridge University Press, Cambridge).

    Google Scholar 

  7. [7]

    Burkert, A. (1995). Astrophys. J. 447, L25.

    Google Scholar 

  8. [8]

    Burkert, A. and Silk, J. (1999). Preprint astro-ph/9904159.

  9. [9]

    Zhytnikov, V. V. and Nester, J. M. (1994). Phys. Rev. Lett. 73, 2950.

    Google Scholar 

  10. [10]

    Mielke, E. W. and Schunck, F. E. (2000). Nucl. Phys. B 564, 185.

    Google Scholar 

  11. [11]

    Alcock, C. et al. (1995). Phys. Rev. Lett. 74, 2867.

    Google Scholar 

  12. [12]

    Schunck, F. E. (1996). Selbstgravitierende Bosonische Materie, Ph.D. thesis, University of Cologne (Cuvillier Verlag, Göttingen).

  13. [13]

    Schunck, F. E. (1997). In Aspects of Dark Matter in Astro-and Particle Physics, H. V. Klapdor-Kleingrothaus and Y. Ramachers (eds.) (World Scientific, Singapore), pp. 403–408.

    Google Scholar 

  14. [14]

    Schunck, F. E. (1998). Preprint astro-ph/9802258.

  15. [15]

    Schunck, F. E. (1999). Proceedings of the Eigth Marcel Grossman Meeting on General Relativity, Jerusalem, 1997, T. Piran and R. Ruffini (eds.) (World Scientific, Singapore), pp. 1447–1449.

    Google Scholar 

  16. [16]

    Spergel, D. N. and Steinhardt, P. J. (2000). Phys. Rev. Lett. 84, 3760.

    Google Scholar 

  17. [17]

    Riotto, A. and Tkachev, I. (2000). Phys. Lett. B 484, 177.

    Google Scholar 

  18. [18]

    Rubin, V. C., Ford, W. K., Jr., and Thonnard, N. (1980). Astrophys. J. 238, 471.

    Google Scholar 

  19. [19]

    Rubin, V. C., Burstein, D., Ford, W. K., Jr., and Thonnard, N. (1985). Astrophys. J. 289, 81.

    Google Scholar 

  20. [20]

    Mielke, E. W. (1978). Phys. Rev. D 18, 4525; (1979). Lett. Nuovo Cim. 25, 424.

    Google Scholar 

  21. [21]

    Matos, T., Guzman, F. S., and Nunez, D. (2000). Phys. Rev. D 62, 061301 (R).

    Google Scholar 

  22. [22]

    Mielke, E. W. and Scherzer, R. (1981). Phys. Rev. D 24, 2111.

    Google Scholar 

  23. [23]

    Kusmartsev, F. V., Mielke, E. W., and Schunck, F. E. (1991). Phys. Rev. D 43, 3895.

    Google Scholar 

  24. [24]

    Kusmartsev, F. V., Mielke, E. W., and Schunck, F. E. (1991). Phys. Lett. A 157, 465.

    Google Scholar 

  25. [25]

    Schunck, F. E., Kusmartsev, F. V., and Mielke, E. W. (1992). In Approaches to Numerical Relativity, R. d'Inverno (Ed.) (Cambridge University Press, Cambridge), pp. 130–140.

    Google Scholar 

  26. [26]

    Kusmartsev, F.V. and Schunck, F. E. (1993). In Classical and Quantum Systems—Foundations and Symmetries, Proceedings of the 2nd International Wigner Symposium, Goslar, 16–20 July 1991,</del>H. D. Doebner, W. Scherer, and F. E. Schroeck (Eds.) (World Scientific, Singapore), pp. 766–769. Kusmartsev, F. V. and Schunck, F. E. (1992). Physica B 178, 24.

    Google Scholar 

  27. [27]

    Schunck, F. E. and Liddle, A. R. (1997). Phys. Lett. B 404, 25.

    Google Scholar 

  28. [28]

    Lee, T. D. and Pang, Y. (1992). Phys. Rep. 221, 251.

    Google Scholar 

  29. [29]

    Gleiser, M. (1989). Phys. Rev. Lett. 63, 1199.

    Google Scholar 

  30. [30]

    Lynn, B. W. (1989). Nucl. Phys. B 321, 465.

    Google Scholar 

  31. [31]

    Nucamendi, U. Salgado, M., and Sudarsky, D. (2001). Phys. Rev. D 63, 12016.

    Google Scholar 

  32. [32]

    Wald, R. M. (1984). General Relativity (University of Chicago Press, Chicago), p. 78.

    Google Scholar 

  33. [33]

    Mielke, E. W. and Schunck, F. E. (2001). Phys. Rev. D 66, 023503.

    Google Scholar 

  34. [34]

    Salucci, P. and Burkert, A. (2000). Astrophys. J. 537, L9.

    Google Scholar 

  35. [35]

    Kratsov, A. V., Klypin, A. A., Bullock, J. S., and Primack, J. R. (1998). Astrophys. J. 502, 48.

    Google Scholar 

  36. [36]

    Shapiro, P. R., Iliev, I. T., and Raga, A. C. (1999). Mon. Not. R. Astr. Soc. 307, 203.

    Google Scholar 

  37. [37]

    Iliev, I. T. and Shapiro, P. R. (2001). Astrophys. J. 546, L5.

    Google Scholar 

  38. [38]

    Mielke, E.W. and Schunck, F. E. (1996). In Gravity, Particles and Space–Time, P. Pronin and G. Sardanashvily (eds.) (World Scientific, Singapore), pp. 391–420.

    Google Scholar 

  39. [39]

    Barriola, M. and Vilenkin, A. (1989). Phys. Rev. Lett. 63, 341; Turok, N. and Spergel, D. (1990). Phys. Rev. Lett. 64, 2736.

    Google Scholar 

  40. [40]

    Mielke, E. W. and Schunck, F. E. (1995). Phys. Rev. D 52, 672.

    Google Scholar 

  41. [41]

    Mielke, E. W. and Schunck, F. E. (2001). Gen. Rel. Grav. 33, 805.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mielke, E.W., Schunck, F.E. & Peralta, H.H. Scalar Soliton in Newtonian Gravity Modelling Dark Matter Halos. General Relativity and Gravitation 34, 1919–1930 (2002). https://doi.org/10.1023/A:1020728411087

Download citation

  • Dark matter
  • rotation curves
  • scalar field models