Skip to main content
Log in

Possible Involvement of GABAA and GABAB Receptors in the Inhibitory Action of Lindane on Transmitter Release from Cerebellar Granule Neurons

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cerebellar granule cells in culture express receptors for GABA belonging to the GABAA and GABAB classes. In order to characterize the ability of the insecticide lindane to interact with these receptors cells were grown in either plain culture media or media containing 150 μM THIP as this is known to influence the properties of both GABAA and GABAB receptors. It was found that lindane regardless of the culture condition inhibited evoked (40 mM K+) release of neurotransmitter ([3H]D-aspartate as label for glutamate). In naive cells both GABAA and GABAB receptor active drugs prevented the inhibitory action of lindane but in THIP treated cultures none of the GABAA and GABAB receptor active drugs had any effect on the inhibitory action of lindane. This lack of effect was not due to inability of baclofen itself to inhibit transmitter release. It is concluded that lindane dependent on the state of the GABAA and GABAB receptors is able to indirectly interfere with both GABAA and GABAB receptors. In case of the latter receptors it was shown using [3H]baclofen to label the receptors that lindane could not displace the ligand confirming that lindane is likely to exert its action at a site different from the agonist binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Smith, A. G. 1991. Chlorinated hydrocarbon insecticides. Pages 731-915, in Hayes, W. J., and Laws, E. E. (eds), Vol. 2, Academic Press, San Diego.

    Google Scholar 

  2. Brown, S., Becher, J., and Brady, W. 1995. Treatment of ectoparasitic infections: Review of the English-language literature. Clin. Infect. Dis. 20:104-109.

    Google Scholar 

  3. Abalis, I. M., Eldefrawi, M. E., and Eldefrawi, A. T. 1985. High-affinity stereospecific binding of cyclodiene insecticides and γ-hexachlorocyclohexane to γ-aminobutyric acid receptors in rat brain. Pestic. Biochem. Physiol. 24:95-102.

    Google Scholar 

  4. Llorens, J., Suñol, C., Tusell, J. M., and Rodríguez-Farré, E. 1990. Lindane inhibition of [35S]TBPS binding to the GABAA receptor in rat brain. Neurotoxicol. and Teratol. 12:607-610.

    Google Scholar 

  5. Pomés, A., Rodríguez-Farré, E., and Suñol, C. 1993. Inhibition of t-[35S]butylbicyclophosphorothionate binding by convulsant agents in primary cultures of cerebellar neurons. Dev. Brain Res. 73:85-90.

    Google Scholar 

  6. Huang, J., and Casida, J. E. 1996. Characterization of [3H]ethynylbicycloorthobenzoate ([3H]EBOB)binding and the action of insecticides on the g-aminobutyric acid-gated chloride channel in cultured cerebellar granule neurons. J. Pharmacol. Exp. Ther. 279:1191-1196.

    PubMed  Google Scholar 

  7. Woodward, R. M., Polenzani, L., and Miledi, R. 1992. Effects of hexachlorocyclohexanes on γ-aminobutyric acid receptors expressed in Xenopus oocytes by RNA from mammalian brain and retina. Mol. Pharmacol. 41:1107-1115.

    PubMed  Google Scholar 

  8. Pomés, A., Rodríguez-Farré, E., and Suñol, C. 1994a. Disruption of GABA-dependent chloride flux by cyclodienes and hexachlorocyclohexanes in primary cultures of cortical neurons. J. Pharmacol. Exp. Ther. 271:1616-1623.

    PubMed  Google Scholar 

  9. Pomés, A., Frandsen, Aa., Suñol, C., Sanfeliu, C., Rodríguez-Farré, E., and Schousboe, A. 1994b. Lindane cytotoxicity in cultured neocortical neurons is ameliorated by GABA and Flunitrazepam. J. Neurosci. Res. 39:663-668.

    PubMed  Google Scholar 

  10. Tokutomi, N., Ozoe, Y., Katayama, N., and Akaike, N. 1994. Effects of lindane (g-BHC) and related convulsants on GABAA receptor-operated chloride channels in frog dorsal root ganglion neurons. Brain Res. 643:66-73.

    PubMed  Google Scholar 

  11. Nagata, K., and Narahashi, T. 1995. Differential effects of hexachlorocyclohexane isomers on the GABA receptor-chloride channel complex in rat dorsal root ganglion neurons. Brain Res. 704:85-91.

    PubMed  Google Scholar 

  12. Fishman, B. E., and Gianutsos, G. 1988. CNS biochemical and pharmacological effects of the isomers of hexachlorocyclohexane (lindane) in the mouse. Toxicol. Appl. Pharmacol. 93:146-153.

    PubMed  Google Scholar 

  13. Suñol, C., Tusell, J. M., Gelpí, E., and Rodríguez-Farré, E. 1989. GABAergic modulation of lindane(γ-hexachlorocyclohexane)-induced seizures. Toxicol. Appl. Pharmacol. 100:1-8.

    PubMed  Google Scholar 

  14. Vale, C., Damgaard, I., Suñol, C., Rodríguez-Farré, E., and Schousboe, A. 1998. Cytotoxic action of lindane in neocortical GABAergic neurons is primarily mediated by interactions with flunitrazepam sensitive GABAA receptors. J. Neurosci. Res. 52:276-285.

    PubMed  Google Scholar 

  15. Kardos, J., Elster, L., Damgaard, I., Krogsgaard-Larsen, P., and Schousboe, A. 1994. Role of GABAB receptors in intracellular Ca2+ homeostasis and possible interaction between GABAA and GABAB receptors in regulation of transmitter release in cerebellar granule neurons. J. Neurosci. Res. 39:646-655.

    PubMed  Google Scholar 

  16. Vale, C., Damgaard, I., Suñol, C., Rodríguez-Farré, E., and Schousboe, A. 1998. Cytotoxic action of lindane in cerebellar granule neurons is mediated by interaction with inducible GABAB receptors. J. Neurosci. Res. 52:286-294.

    PubMed  Google Scholar 

  17. Drejer, J., Larsson, O. M., and Schousboe A. 1982. Characterization of L-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp. Brain Res. 47:259-269.

    PubMed  Google Scholar 

  18. Drejer, J., Larsson, O. M., and Schousboe, A. 1983. Characterization of uptake and release processes for D-and L-aspartate in primary cultures of astrocytes and cerebellar granule cells. Neurochem. Res. 8:231-243.

    PubMed  Google Scholar 

  19. Meier, E., Drejer, J., and Schousboe, A. 1984. GABA induces functionally active low-affinity GABA receptors on cultured cerebellar granule cells. J. Neurochem. 43:1737-1744.

    PubMed  Google Scholar 

  20. Huston, E., Scott, R. H., and Dolphin, A. C. 1990. A comparison of the effect of calcium channel ligands and GABAB agonists and antagonists in transmitter release and somatic calcium channel currents in cultured neurons. Neuroscience 38:721-729.

    PubMed  Google Scholar 

  21. Huston, E., Gullen, G., Sweeney, M. I., Pearson, H., Fazeli, M. S., and Dolphin, A. C. 1993. Pertussis toxin treatment increases glutamate release and dihydropyridine binding sites in cultured rat cerebellar granule neurons. Neuroscience 52:787-798.

    PubMed  Google Scholar 

  22. Kaupmann, K., Huggel, K., Heid, J., Flor, P. J., Bischoff, S., Mickel, S. J., McMaster, G., Angst, C., Bittiger, H., Froestl, W., and Bettler, B. 1997. Expression cloning of GABAB receptors uncovers similarity ot metabotropic glutamate receptors. Nature 386:239-246.

    Google Scholar 

  23. Schousboe, A., Meier, E., Drejer, J., and Hertz, L. 1989. Preparation of prymary cultures of mouse (rat) cerebellar granule cells. Pages 203-206 in Shahar, A., de Vellis, J., Vernadakis, A., and Haber, B. (eds) A Dissection and Tissue Culture Manual of the Nervous System, Alan R. Liss, Inc., New York.

    Google Scholar 

  24. Drejer, J. and Schousboe, A. 1989. Selection of a pure cerebellar granule cell culture by kainate treatment. Neurochem. Res. 14:751-754.

    PubMed  Google Scholar 

  25. Damgaard, I., Trenkner, E., Sturman, J. A., and Schousboe, A. 1996. Effect of K+-and kainate-mediated depolarization on survival and functional maturation of GABAergic and glutamatergic neurons in cultures of dissociated mouse cerebellum. Neurochem. Res. 21:267-275.

    PubMed  Google Scholar 

  26. Palaiologos, G., Hertz, L., and Schousboe, A. 1989. Role of aspartate aminotransferase and mitochondrial dicarboxylate transport for release of endogenously and exogenously supplied neurotransmitter in glutamatergic neurons. Neurochem. Res. 14:359-366.

    PubMed  Google Scholar 

  27. Drejer, J., Honoré, T. and Schousboe, A. 1987. Excitatory amino acid induced release of 3H-GABA from cultured mouse cerebral cortex interneurons. J. Neurosci. 7:2910-2916.

    PubMed  Google Scholar 

  28. Belhage, B., Hansen, G. H., and Schousboe, A. 1993. Depolarization by K+ and glutamate activates different neurotransmitter release mechanisms in GABAergic neurons: Vesicular versus non-vesicular release of GABA. Neuroscience 54:1019-1034.

    PubMed  Google Scholar 

  29. Hill, D. R., and Bowery, N. G. 1981. 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature 290:149-152.

    Google Scholar 

  30. Kardos, J., Blandi, T., Kovács, I., Kékesi, K. A., Reichart, A., Nyitrai, G., Dobolyi, Á., Jhász, G., 1996. Use of ligands with low nanomolar affinity for the GABAB receptors: Effect of CGP 55845A on the release of amino acids. Pharmacol. Rev. Commun. 8:153-157.

    Google Scholar 

  31. Kaupmann, K., Malitschek, B., Schuler, V., Heid, J., Froestl, W., Beck, P., Mosbacher, J., Bischoff, S., Kulik, A., Shigemoto, R., Karschin, A., Bettler, B. 1998. GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396:683-687.

    Google Scholar 

  32. Jones, K. A., Borowsky, B., Tamm, J. A., Craig, D. A., Durkin, M. M., Dai, M., Yao, W.-J., Johnson, M., Gunwaldsen, C., Huang, L.-Y., Tang, C., Shen, Q., Salon, J. A., Morse, K., Laz, T., Smith, K. E., Nagarathnam, D., Noble, S. A., Branchek, T. A., Gerald, C. 1998. GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396:674-679.

    Google Scholar 

  33. White, J. H., Wise, A., Main, M. J., Green, A., Fraser, N. J., Disney, G. H., Barnes, A. A., Emson, P., Foord, S. M., Marshall, F. H. 1998. Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396:679-682.

    Google Scholar 

  34. Carlson, B. X., Elster, L., and Schousboe, A. 1998. Pharmacological and functional implications of developmentally-regulated changes in GABAA receptor subunit expression in the cerebellum. Eur. J. Pharmacol. 352:1-14.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damgaard, I., Nyitrai, G., Kovács, I. et al. Possible Involvement of GABAA and GABAB Receptors in the Inhibitory Action of Lindane on Transmitter Release from Cerebellar Granule Neurons. Neurochem Res 24, 1189–1193 (1999). https://doi.org/10.1023/A:1020724823117

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020724823117

Navigation