Skip to main content
Log in

Molecular Mechanisms of Actions of Interleukin-6 on the Brain, with Special Reference to Serotonin and the Hypothalamo-Pituitary-Adrenocortical Axis

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Biological activities of the multifunctional cytokine, interleukin-6 (IL-6) include stimulation of B cell proliferation, immunoglobulin production, and initiation of the acute-phase response. IL-6 affects the CNS in that it activates the hypothalamo-pituitary-adrenocortical (HPA) axis and increases brain tryptophan and serotonin metabolism. IL-6 has been proposed as an important mediator of interaction between the neuroendocrine and immune systems. The peripheral and central effects of IL-6 are presumably mediated through its membrane receptor (IL-6R). IL-6, IL-6R and their respective mRNAs have been detected in several brain regions. Although the functions of cytokines overlap considerably, each displays its own characteristic properties. Expression of IL-6 in the brain has been observed in several CNS disorders, some of which have been associated with disorders of serotonin metabolism. It is proposed that interactions between IL-6 and brain serotonin is a complex process which involves corticotropin-releasing factor (CRF) and opioid peptides. It is likely that the molecular mechanisms underlying the actions of IL-6 on the HPA axis and its other brain functions involve the integrated effects of glutamate, Ca2+, 3′,5′-cyclic AMP, protein kinase C, and other metabolic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Akira, S., Taga, T., and Kishimoto, T., 1993. Interleukin-6 in biology and medicine. Adv. Immunol. 54:1-78.

    PubMed  Google Scholar 

  2. Kishimoto, T., Akira, S., and Taga, T., 1992. Interleukin-6 and its receptor: a paradigm for cytokines. Science 258:593-597.

    Google Scholar 

  3. Barton, B. E., 1996. The biological effects of interleukin-6. Med. Res. Rev. 16:87-109.

    PubMed  Google Scholar 

  4. Van Snick, J., 1990. Interleukin-6: an overview. Annu. Rev. Immunol. 8:253-278.

    PubMed  Google Scholar 

  5. Baumann, H., and Gauldie, J., 1994. The acute phase response. Immunol. Today 15:74-80.

    PubMed  Google Scholar 

  6. Castell, J. V., Gómez-Lechón, M. J., David, M., Andus, T., Geiger, T., Trullenque, R., Fabra, R., and Heinrich, P. C., 1989. Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Letts 242:237-239.

    Google Scholar 

  7. Opp, M., Obal, F., Cady, A. B., Johannsen, L., and Krueger, J. M., 1989. Interleukin-6 is pyrogenic but not somnogenic. Physiol. Behav. 45:1069-1072.

    PubMed  Google Scholar 

  8. LeMay, L. G., Vander, A. J., and Kluger, M. J., 1990. Role of interleukin 6 in fever in rats. Amer. J. Physiol. 258:R798-803.

    PubMed  Google Scholar 

  9. Rothwell, N. J., Busbridge, N. J., Lefeuvre, R. A., Hardwick, A. J., Gauldie, J., and Hopkins, S. J., 1991. Interleukin-6 is a centrally acting endogenous pyrogen in the rat. Can. J. Physiol. Pharmacol. 69:1465-1469.

    PubMed  Google Scholar 

  10. Klir, J. J., Roth, J., Szelényi, Z., McClellan, J. L., and Kluger, M. J., 1993. Role of hypothalamic interleukin-6 and tumor necrosis factor-α in LPS fever in rat. Amer. J. Physiol. 265:R512-517.

    PubMed  Google Scholar 

  11. Wang, J. P., Ando, T., and Dunn, A. J., 1997. Effect of homologous interleukin-1, interleukin-6 and tumor necrosis factor α on the core body temperature of mice. NeuroImmunomodulation 4:230-286.

    PubMed  Google Scholar 

  12. del Rey, A., and Besedovsky, H. O., 1992. Metabolic and neuroendocrine effects of pro-inflammatory cytokines. Europ. J. Clin. Invest. 22:10-15.

    PubMed  Google Scholar 

  13. Lyson, K., and McCann, S. M., 1992. Involvement of arachidonic acid cascade pathways in interleukin-6-stimulated corticotropin-releasing factor release in vitro. Neuroendocrinol. 55:708-713.

    Google Scholar 

  14. Matta, S. G., Weatherbee, J., and Sharp, B. M., 1992. A central mechanism is involved in the secretion of ACTH in response to IL-6 in rats: comparison to and interaction with IL-1β. Neuroendocrinol. 56:516-525.

    Google Scholar 

  15. Wang, J. P., and Dunn, A. J., 1998. Mouse interleukin-6 stimulates the HPA axis and increases brain tryptophan and serotonin metabolism. Neurochem. Intl 33:143-154.

    Google Scholar 

  16. Dunn, A. J., 1995. Interactions between the nervous system and the immune system: implications for psychopharmacology, Pages 719-731, in Bloom, F. E., and Kupfer, D. J. (eds.), Psychopharmacology: The Fourth Generation of Progress, Raven Press, New York.

    Google Scholar 

  17. Besedovsky, H. O., and del Rey, A., 1996. Immune-neuroendocrine interactions: facts and hypotheses. Endocrine Rev. 17:64-102.

    Google Scholar 

  18. Jones, T. H., 1994. Interleukin-6 an endocrine cytokine. Clin. Endocrinol. 40:703-713.

    Google Scholar 

  19. Plata-Salamán, C. R., 1991. Immunoregulators in the nervous system. Neurosci. Biobehav. Rev. 15:185-215.

    PubMed  Google Scholar 

  20. Hopkins, S. J., and Rothwell, N. J., 1995. Cytokines and the nervous system I: expression and recognition. TINS 18:83-88.

    PubMed  Google Scholar 

  21. Schöbitz, B., de Kloet, E. R., and Holsboer, F., 1994. Gene expression and function of interleukin-1, interleukin-6 and tumor necrosis factor in the brain. Prog. Neurobiol. 44:397-432.

    PubMed  Google Scholar 

  22. Besedovsky, H. O., and Del Rey, A., 1992. Immune-neuroendocrine circuits: integrative role of cytokines. Front. Neuroendocrinol. 13:61-94.

    PubMed  Google Scholar 

  23. Lieberman, A. P., Pitha, P. M., Shin, H. S., and Shin, M. L., 1989. Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus. Proc. Natl. Acad. Sci. USA. 86:6348-6352.

    PubMed  Google Scholar 

  24. Norris, J. G., Tang, L. P., Sparacio, S. M., and Benveniste, E. N., 1994. Signal transduction pathways mediating astrocyte IL-6 induction by IL-1 beta and tumor necrosis factor-alpha. J. Immunol. 152:841-850.

    PubMed  Google Scholar 

  25. Lieb, K., Kaltschmidt, C., Kaltschmidt, B., Baeuerle, P. A., Berger, M., Bauer, J., and Fiebich, B. L., 1996. Interleukin-1β uses common and distinct signaling pathways for induction of the interleukin-6 and tumor necrosis factor α genes in the human astrocytoma cell line U373. J. Neurochem. 66:1496-1503.

    PubMed  Google Scholar 

  26. Lafortune, L., Nalbantoglu, J., and Antel, J. P., 1996. Expression of tumor necrosis factor alpha (TNF alpha) and interleukin 6 (IL-6) mRNA in adult human astrocytes: comparison with adult microglia and fetal astrocytes. J. Neuropathol. Exp. Neurol. 55:515-521.

    PubMed  Google Scholar 

  27. Sébire, G., Emilie, D., Wallon, C., Héry, C., Devergne, O., Delfraissy, J.-F., Galanaud, P., and Tardieu, M., 1993. In vitro production of IL-6, IL-1β, and tumor necrosis factor-α by human embryonic microglial and neural cells. J. Immunol. 150:1517-1523.

    PubMed  Google Scholar 

  28. Yamasaki, K., Taga, T., Hirata, Y., Yawata, H., Kawanishi, Y., Seed, B., Taniguchi, T., Hirano, T., and Kishimoto, T., 1988. Cloning and expression of the human interleukin-6 (BSF-2/IFN beta 2) receptor. Science 241:825-828.

    PubMed  Google Scholar 

  29. Murakami, M., Hibi, M., Nakagawa, N., Nakagawa, T., Yasukawa, K., Yamanishi, K., Taga, T., and Kishimoto, T., 1993. IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science 260:1808-1810.

    PubMed  Google Scholar 

  30. Narazaki, M., Yasukawa, K., Saito, T., Ohsugi, Y., Fukui, H., Koishihara, Y., Yancopoulos, G. D., Taga, T., and Kishimoto, T., 1993. Soluble forms of the interleukin-6 signal-transducing receptor component gp130 in human serum possessing a potential to inhibit signals through membrane-anchored gp130. Blood 82:1120-1126.

    PubMed  Google Scholar 

  31. Suzuki, H., Yasukawa, K., Saito, T., Narazaki, M., Hasegawa, A., Taga, T., and Kishimoto, T., 1993. Serum soluble IL-6 receptor in MRL/1 pr mice is elevated with age and mediates the IL-6 signal. Europ. J. Immunol. 23:1078-1082.

    Google Scholar 

  32. Gadient, R. A., and Otten, U., 1993. Differential expression of interleukin-6 (IL-6) and interleukin-6 receptor (IL-6R) messenger RNAs in rat hypothalamus. Neurosci. Letts 153:13-16.

    Google Scholar 

  33. Schöbitz, B., de Kloet, E. R., Sutanto, W., and Holsboer, F., 1993. Cellular localization of interleukin 6 mRNA and interleukin 6 receptor mRNA in rat brain. Europ. J. Neurosci. 5:1426-1435.

    Google Scholar 

  34. Schöbitz, B., Voorhuis, D. A. M., and De Kloet, E. R., 1992. Localization of interleukin 6 mRNA and interleukin 6 receptor mRNA in rat brain. Neurosci. Letts 136:189-192.

    Google Scholar 

  35. Hama, T., Kushima, Y., Mityamoto, M., Kubota, M., Takei, N., and Hatanaka, H., 1991. Interleukin-6 improves the survival of mesencephalic catecholaminergic and septal cholinergic neurons from postnatal two-week old rats in cultures. Neurosci. 40:445-452.

    Google Scholar 

  36. Otten, U., Heese, K., März, P., and Rose-John, S., 1998. Region-specific neurotrophin expression by interleukin-6-activated rat astrocytes. Soc. Neurosci. Abstr. 24:1288.

    Google Scholar 

  37. Fiebich, B. L., Biber, K., Gyufko, K., Berger, M., Bauer, J., and van Calker, D., 1996. Adenosine A2b receptors mediate an increase in interleukin (IL)-6 mRNA and IL-6 protein synthesis in human astroglioma cells. J. Neurochem. 66:1426-1431.

    PubMed  Google Scholar 

  38. Kozawa, O., Suzu, A., Tokuda, H., Kaida, T., and Uematsu, T., 1998. Interleukin-6 synthesis induced by prostaglandin E2: cross-talk regulation by protein kinase C. Bone 22:355-360.

    PubMed  Google Scholar 

  39. Fiebich, B. L., Lieb, K., Berger, M., and Bauer, J., 1995. Stimulation of the sphingomyelin pathway induces interleukin-6 gene expression in human astrocytoma cell. J. Neuroimmunol. 63:207-211.

    PubMed  Google Scholar 

  40. Maimone, D., Cioni, C., Rosa, S., Macchia, G., Aloisi, F., and Annunziata, P., 1993. Norepinephrine and vasoactive intestinal peptide induce IL-6 secretion by astrocytes: synergism with IL-1 beta and TNF alpha. J. Neuroimmunol. 47:73-81.

    PubMed  Google Scholar 

  41. Onyia, J. E., Libermann, T. A., Bidwell, J., Arnold, D., Tu, Y., McClelland, P., and Hock, J. M., 1997. Parathyroid hormone (1–34)-mediated interleukin-6 induction. J. Cell. Biochem. 67:265-274.

    PubMed  Google Scholar 

  42. Zhang, Y., Lin, J. X., and Vilcek, J., 1988. Synthesis of interleukin 6 (interferon-β2/B cell stimulatory factor 2) in human fibroblasts is triggered by an increase in intracellular cyclic AMP. J. Biol. Chem. 263:6177-7182.

    PubMed  Google Scholar 

  43. Sehgal, P. B., Walther, Z., and Tamm, I., 1987. Rapid enhancement of β2-interferon/B cell differentiation factor BSF-2 gene expression in human fibroblasts by diacylglycerols and the calcium ionophore A23187. Proc. Natl. Acad. Sci. USA 84:3663-3667.

    PubMed  Google Scholar 

  44. Sehgal, P. B., 1992. Regulation of IL 6 gene expression. Res. Immunol. 143:724-734.

    PubMed  Google Scholar 

  45. Dendorfer, U., Oettgen, P., and Libermann, T. A., 1994. Multiple regulatory elements in the interleukin-6 gene mediate induction by prostaglandins, cyclic AMP and lipopolysaccharide. Molec. Cell. Biol. 14:4443-4454.

    PubMed  Google Scholar 

  46. Kawashima, S., Hayashi, M., Takii, T., Kimura, H., Zhang, H. L., Nagatsu, A., Sakakibara, J., Murata, K., Oomoto, Y., and Onozaki, K., 1998. Serotonin derivative, N-(p-coumaroyl) serotonin, inhibits the production of TNF-alpha, IL-1α, IL-1β, and IL-6 by endotoxin-stimulated human blood monocytes. Intl. Cytokine Res. 18:423-428.

    Google Scholar 

  47. Dunn, A.J., 1992. The role of interleukin-1 and tumor necrosis factor α in the neurochemical and neuroendocrine responses to endotoxin. Brain Res. Bull. 29:807-812.

    PubMed  Google Scholar 

  48. Zalcman, S., Green-Johnson, J. M., Murray, L., Nance, D. M., Dyck, D., Anisman, H., and Greenberg, A. H., 1994. Cytokine-specific central monoamine alterations induced by interleukin-1,-2 and-6. Brain Res. 643:40-49.

    PubMed  Google Scholar 

  49. Terao, A., Oikawa, M., and Saito, M., 1994. Tissue-specific increase in norepinephrine turnover by central interleukin-1, but not by interleukin-6, in rats. Amer. J. Physiol. 266:R400-404.

    PubMed  Google Scholar 

  50. Dunn, A. J., 1992. Endotoxin-induced activation of cerebral catecholamine and serotonin metabolism: comparison with interleukin-1. J. Pharmacol. Exptl Therapeut. 261:964-969.

    Google Scholar 

  51. Dunn, A. J., and Welch, J., 1991. Stress-and endotoxin-induced increases in brain tryptophan and serotonin metabolism depend on sympathetic nervous system activation. J. Neurochem. 57:1615-1622.

    PubMed  Google Scholar 

  52. Heyes, M. P., Quearry, B. J., and Markey, S. P., 1989. Systemic endotoxin increases L-tryptophan, 5-hydroxyindoleacetic acid, 3-hydroxykynurenine and quinolinic acid content of mouse cerebral cortex. Brain Res. 491:173-179.

    PubMed  Google Scholar 

  53. Masana, M. I., Heyes, M. P., and Mefford, I. N., 1990. Indomethacin prevents increased catecholamine turnover in rat brain following systemic endotoxin challenge. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 14:609-621.

    Google Scholar 

  54. Linthorst, A. C. E., Flackskamm, C., Holsboer, F., and Reul, J. M. H. M., 1996. Activation of serotonergic and noradrenergic neurotransmission in the rat hippocampus after peripheral administration of bacterial endotoxin: involvement of the cyclo-oxygenase pathway. Neuroscience 72:989-997.

    PubMed  Google Scholar 

  55. Linthorst, A. C. E., Flanchskamm, C., Müller-Preuss, P., Holsboer, F., and Reul, J. M. H. M., 1995. Effect of bacterial endotoxin and interleukin-1β on hippocampal serotonergic neurotransmission, behavioral activity, and free corticosterone levels: an in vivo microdialysis study. J. Neurosci. 15:2920-2934.

    PubMed  Google Scholar 

  56. Lavicky, J., and Dunn, A. J., 1995. Endotoxin administration stimulates cerebral catecholamine release in freely moving rats as assessed by microdialysis. J. Neurosci. Res. 40:407-413.

    PubMed  Google Scholar 

  57. Shintani, F., Kanba, S., Nakaki, T., Nibuya, M., Kinoshita, N., Suzuki, E., Yagi, G., Kato, R., and Asai, M., 1993. Interleukin-1β augments release of norepinephrine, dopamine, and serotonin in the rat anterior hypothalamus. J. Neurosci. 13:3574-3581.

    PubMed  Google Scholar 

  58. Linthorst, A. C. E., Flachskamm, C., Holsboer, F., and Reul, J. M., 1994. Local administration of recombinant human interleukin-1β in the rat hippocampus increases serotonergic neurotransmission, hypothalamic-pituitary-adrenocortical axis activity and body temperature. Endocrinol. 135:520-532.

    Google Scholar 

  59. Dunn, A. J., Powell, M. L., Meitin, C., and Small, P. A., 1989. Virus infection as a stressor: influenza virus elevates plasma concentrations of corticosterone, and brain concentrations of MHPG and tryptophan. Physiol. Behav. 45:591-594.

    PubMed  Google Scholar 

  60. Dinarello, C. A., Cannon, J. G., Mancilla, J., Bishai, I., Lees, J., and Coceani, F., 1991. Interleukin-6 as an endogenous pyrogen: induction of prostaglandin E2 in brain but not in peripheral blood mononuclear cells. Brain Res. 562:199-206.

    PubMed  Google Scholar 

  61. Perlstein, R. S., Whitnall, M. H., Abrams, J. S., Mougey, E. H., and Neta, R., 1993. Synergistic roles of interleukin-6, interleukin-1, and tumor necrosis factor in the adrenocorticotropin response to bacterial lipopolysaccharide in vivo. Endocrinol. 132:946-952.

    Google Scholar 

  62. Wang, J. P., and Dunn, A. J., 1999. The role of interleukin-6 in the activation of the hypothalamo-pituitary-adrenocortical axis induced by endotoxin and interleukin-1β. Brain Res. 815:337-348.

    PubMed  Google Scholar 

  63. Alper, R. H., 1990. Evidence for central and peripheral serotonergic control of corticosterone secretion in the conscious rats. Neuroendocrinol. 51:255-260.

    Google Scholar 

  64. Bagdy, G., Calogero, A. E., Murphy, D. L., and Szemeredi, K., 1989. Serotonin agonists cause parallel activation of the sympathoadrenomedullary system and the hypothalamo-pituitary-adrenocortical axis in conscious rats. Endocrinol. 125:2664-2669.

    Google Scholar 

  65. Korte, S. M., Van Duin, S., Bouws, G. A. H., Koolhaas, J. M., and Bohus, B., 1991. Involvement of hypothalamic serotonin in activation of the sympathoadrenomedullary system and hypothalamo-pituitary-adrenocortical axis in male Wistar rats. Europ. J. Pharmacol. 197:225-228.

    Google Scholar 

  66. Pan, L., and Gilbert, F., 1992. Activation of 5-HT1A receptor subtype in the paraventricular nuclei of the hypothalamus induces CRH and ACTH release in the rat. Neuroendocrinol. 56:797-802.

    Google Scholar 

  67. Dunn, A. J., and Chuluyan, H., 1992. The role of cyclo-oxygenase and lipoxygenase in the interleukin-1-induced activation of the HPA axis: dependence on the route of injection. Life Sci. 51:219-225.

    PubMed  Google Scholar 

  68. Dunn, A. J., 1993. Nitric oxide synthase inhibitors prevent the cerebral tryptophan and serotonergic responses to endotoxin and interleukin-1. Neurosci. Res. Commun. 13:149-156.

    Google Scholar 

  69. Dunn, A. J., 1999. Brain catecholaminergic and tryptophan responses to restraint are attenuated by nitric oxide synthase inhibition. Neurochem. Intl 33:551-557.

    Google Scholar 

  70. Vale, W., Spiess, J., Rivier, C., and Rivier, J., 1981. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science 213:1394-1397.

    PubMed  Google Scholar 

  71. Saphier, D., and Ovadia, H., 1990. Selective facilitation of putative corticotropin-releasing factor-secreting neurones by interleukin-1. Neurosci. Letts 114:283-288.

    Google Scholar 

  72. Sapolsky, R., Rivier, C., Yamamoto, G., Plotsky, P., and Vale, W., 1987. Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science 238:522-524.

    PubMed  Google Scholar 

  73. Uehara, A., Gottschall, P. E., Dahl, R. R., and Arimura, A., 1987. Interleukin-1 stimulates ACTH release by an indirect action which requires endogenous corticotropin releasing factor. Endocrinol. 121:1580-1582.

    Google Scholar 

  74. Dunn, A. J., 1993. Role of cytokines in infection-induced stress. Ann. N.Y. Acad. Sci. 697:189-202.

    PubMed  Google Scholar 

  75. Berkenbosch, F., van Oers, J., del Rey, A., Tilders, F., and Besedovsky, H., 1987. Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science 238:524-526.

    PubMed  Google Scholar 

  76. Takao, T., Newton, R. C., and De Souza, E. B., 1993. Species differences in [125I]interleukin-1 binding in brain, endocrine and immune tissues. Brain Res. 623:172-176.

    PubMed  Google Scholar 

  77. Haour, F., Ban, E., Marquette, C., Milon, G., and Fillion, G., 1992. Brain Interleukin-1 receptors: mapping, characterization and modulation, Pages 13-25, in Rothwell, N. J., and Dantzer, R. D. (eds.), Interleukin-1 in the Brain, Pergamon Press, Oxford.

    Google Scholar 

  78. Dunn, A. J., 1988. Systemic interleukin-1 administration stimulates hypothalamic norepinephrine metabolism parallelling the increased plasma corticosterone. Life Sci. 43:429-435.

    PubMed  Google Scholar 

  79. Kabiersch, A., del Rey, A., Honegger, C. G., and Besedovsky, H. O., 1988. Interleukin-1 induces changes in norepinephrine metabolism in the rat brain. Brain Behav. Immun. 2:267-274.

    PubMed  Google Scholar 

  80. Chuluyan, H., Saphier, D., Rohn, W. M., and Dunn, A. J., 1992. Noradrenergic innervation of the hypothalamus participates in the adrenocortical responses to interleukin-1. Neuroendocrinol. 56:106-111.

    Google Scholar 

  81. Weidenfeld, J., Abramsky, O., and Ovadia, H., 1989. Evidence for the involvement of the central adrenergic system in interleukin 1-induced adrenocortical response. Neuropharmacol. 28:1411-1414.

    Google Scholar 

  82. Chang, S. L., Ren, T., and Zadina; J. E., 1993. Interleukin-1 activation of Fos protooncogene protein in the rat hypothalamus. Brain Res. 617:123-130.

    PubMed  Google Scholar 

  83. Day, H. E. W., and Akil, H., 1996. Differential pattern of c-fos mRNA in rat brain following central and systemic administration of interleukin-1-beta: implications for mechanism of action. Neuroendocrinology 63:207-218.

    PubMed  Google Scholar 

  84. Swiergiel, A. H., Dunn, A. J., and Stone, E. A., 1996. The role of cerebral noradrenergic systems in the Fos response to interleukin-1. Brain Res. Bull. 41: 61-64.

    PubMed  Google Scholar 

  85. Tsigos, C., Papanicolaou, D. A., Defensor, R., Mitsiadis, C. S., Kyrou, I., and Chrousos, G. P., 1997. Dose effects of recombinant human interleukin-6 on pituitary hormone secretion and energy expenditure. Neuroendocrinol. 66:54-62.

    Google Scholar 

  86. Naitoh, Y., Fukata, J., Tominaga, T., Nakai, Y., Tamai, S., Mori, K., and Imura, H., 1988. Interleukin-6 stimulates the secretion of adrenocorticotropic hormone in conscious, freely-moving rats. Biochem. Biophys. Res. Commun. 155:1459-1463.

    PubMed  Google Scholar 

  87. Lyson, K., and McCann, S. M., 1991. The effect of interleukin-6 on pituitary hormone release in vivo and in vitro. Neuroendocrinol. 54:262-266.

    Google Scholar 

  88. Vallieres, L., and Rivest, S., 1998. Permissive role of interleukin-6 and its receptor on the neural activity and neuroendocrine CRF gene expression during endotoxeamia. Soc. Neurosci. Abstr. 24:1859.

    Google Scholar 

  89. Fuller, R. W., 1990. Serotonin receptors and neuroendocrine responses. Neuropsychopharmacol. 3:495-502.

    Google Scholar 

  90. McElroy, J. F., Miller, J. M., and Meyer, J. S., 1984. Fenfluramine, p-chloroamphetamine and p-fluoroamphetamine stimulation of pituitary adrenocortical activity in the rat: evidence for differences in site and mechanism of action. J. Pharmacol. Exptl. Therap. 228:593-599.

    Google Scholar 

  91. Jones, M. T., Hillhouse, E. W., and Burden, J. L., 1976. Effect on various putative neurotransmitters on the secretion of corticotrophin-releasing hormone from the rat hypothalamus in vitro—a model of the neurotransmitters. J. Endocrinol. 69:1-10.

    PubMed  Google Scholar 

  92. Gibbs, D. M., and Vale, W., 1983. Effect of the serotonin reuptake inhibitor fluoxetine on corticotropin-releasing factor and vasopressin secretion into hypophysial portal blood. Brain Res. 280:176-179.

    PubMed  Google Scholar 

  93. Grossman, A., Costa, A., Navarra, P., and Tsagarakis, S., 1993. The regulation of hypothalamic corticotropin-releasing factor release: in vitro studies, Pages 129-150, in Chadwick, D. J., Marsh, J., and Ackrill, K. (eds.), Corticotropin-Releasing Factor, Wiley-Interscience Publication, London.

    Google Scholar 

  94. Le Feuvre, R. A., Aisenthal, L., and Rothwell, N. J., 1991. Involvement of corticotrophin releasing factor (CRF) in the thermogenic and anorexic actions of serotonin (5-HT) and related compounds. Brain Res. 555:245-250.

    PubMed  Google Scholar 

  95. Samanin, R., and Garattini, S., 1989. Serotonin and the pharmacology of eating disorders. Ann. N.Y. Acad. Sci. 575:194-207.

    PubMed  Google Scholar 

  96. Rothwell, N. J., and Stock, M. J., 1987. Effect of diet and fenfluramine on thermogenesis in the rat: possible involvement of serotonergic mechanisms. Intl. J. Obes. 11:319-324.

    Google Scholar 

  97. Appel, N. M., Owens, M. J., Culp, S., Zaczek, R., Contrera, J. F., Bissette, G., Nemeroff, C. B., and De Souza, E. B., 1991. Role for brain corticotropin-releasing factor in the weight-reducing effects of chronic fenfluramine treatment in rats. Endocrinol. 128:3237-3246.

    Google Scholar 

  98. Richard, D., Rivest, S., and Rivier, C., 1992. The 5-hydroxy-tryptamine agonist fenfluramine increase Fos-like immuno reactivity in the brain. Brain Res. 594:131-137.

    PubMed  Google Scholar 

  99. Le Feuvre, R. A., Rothwell, N. J., and Stock, M. J., 1987. Activation of brown fat thermogenesis in response to central injection of corticotropin releasing hormone in the rat. Neuropharmacol. 26:1217-1221.

    Google Scholar 

  100. Dunn, A. J., and Berridge, C. W., 1990. Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress response? Brain Res. Rev. 15:71-100.

    PubMed  Google Scholar 

  101. Rothwell, N. J., 1989. CRF is involved in the pyrogenic and thermogenic effects of interleukin-1β in the rat. Amer. J. Physiol. 256:E111-115.

    PubMed  Google Scholar 

  102. Swiergiel, A. H., and Dunn, A. J., in press. CRF-deficient mice respond like wild type mice to hypophagic stimuli. Pharmacol. Biochem. Behav.

  103. Dunn, A. J., and Berridge, C. W., 1987. Corticotropin-releasing factor administration elicits a stress-like activation of cerebral catecholaminergic systems. Pharmacol. Biochem. Behav. 27:685-691.

    PubMed  Google Scholar 

  104. Lavicky, J., and Dunn, A. J., 1993. Corticotropin-releasing factor stimulates catecholamine release in hypothalamus and prefrontal cortex in freely moving rats as assessed by microdialysis. J. Neurochem. 60:602-612.

    PubMed  Google Scholar 

  105. Price, M. L., Curtis, A. L., Kirby, L. G., Valentino, R. J., and Lucki, I., 1998. Effects of corticotropin-releasing factor on brain serotonergic activity. Neuropsychopharmacol. 18:492-502.

    Google Scholar 

  106. Carr, D. J. J., and Blalock, J. E., 1991. Neuropeptide hormones and receptors common to the immune and neuroendocrine systems: bidirectional pathway of intersystem communication, Pages 573-588, in Ader, R., Felten, D. L., and Cohen, N. (eds.), Psychoneuroimmunology, Academic Press, San Diego.

    Google Scholar 

  107. Goetzl, E. J., Turck, C. W., and Speedharan, S. P., 1991. Production and recognition of neuropeptides by cells of the immune system, Pages 263-282, in Ader, R., Felten, D. L., and Cohen, N. (eds.), Psychoneuroimmunology, Academic Press, San Diego.

    Google Scholar 

  108. Stein, C., Hassan, A. H. S., Przewlocki, R., Gramsch, C., Peter, K., and Herz, A., 1990. Opioids from immunocytes interact with receptors on sensory nerves to inhibit nociception in inflammation. Proc. Natl. Acad. Sci. USA. 87:5935-5939.

    PubMed  Google Scholar 

  109. Czlonkowski, A., Stein, C., and Herz, A., 1993. Peripheral mechanisms of opioid antinociception in inflammation: involvement of cytokines. Europ. J. Pharmacol. 242:229-235.

    Google Scholar 

  110. Fagarasan, M. O., Eskay, R., and Axelrod, J., 1989. Interleukin 1 potentiates the secretion of B-endorphin induced by secretagogues in a mouse pituitary cell line (AtT-20). Proc. Natl. Acad. Sci. USA 86:2070-2073.

    PubMed  Google Scholar 

  111. Bessler, H., Sztein, M. B., and Serrate, S. A., 1990. β-endorphin modulation of IL-1 induced IL-2 production. Immunopharmacol. 19:5-14.

    Google Scholar 

  112. Heijnen, C. J., Kavelaars, A., and Ballieux, R. B., 1991. β-endorphin: cytokine and neuropeptide. Immunol. Rev. 119:41-63.

    PubMed  Google Scholar 

  113. De Simoni, M. G., 1997. The role of the brain in IL-6 modulation. Neuroimmunomodulation 4:207.

    Google Scholar 

  114. Manfredi, B., Sacerdote, P., Gaspani, L., Poli, V., and Panerai, A. E., 1998. IL-6 knock-out mice show modified basal immune functions, but normal immune responses to stress. Brain Behav. Immun. 12:201-211.

    PubMed  Google Scholar 

  115. Dunn, A. J., and Kramarcy, N. R., 1984. Neurochemical responses in stress: relationships between the hypothalamic-pituitary-adrenal and catecholamine systems, Pages 455-515, in Iversen, L. L., Iversen, S. D., and Snyder, S. H. (eds.), Handbook of Psychopharmacology, Plenum Press, New York.

    Google Scholar 

  116. Pechnick, R. N., 1993. Effects of opioids on the hypothalamo-pituitary-adrenal axis. Annu. Rev. Pharmacol. Toxicol. 33:353-382.

    PubMed  Google Scholar 

  117. Ceccatelli, S., and Orazzo, C., 1993. Effect of different types of stressors on peptide messenger ribonucleic acids in hypothalamic paraventricular nucleus. Acta Endocrinol. 128:485-492.

    PubMed  Google Scholar 

  118. Merchenthaler, I., 1992. Enkephalin-immunoreactive neurons in the parvicellular subdivisions of the paraventricular nucleus project to the external zone of the median eminence. J. Comp. Neurol. 326:112-120.

    PubMed  Google Scholar 

  119. Wang, X. Q., Imaki, T., Shibasaki, T., Yamauchi, N., and Demura, H., 1996. Intracerebroventricular administration of β-endorphin increases the expression of c-fos and of corticotropin-releasing factor messenger ribonucleic acid in the paraventricular nucleus of the rat. Brain Res. 707:189-195.

    PubMed  Google Scholar 

  120. Borsook, D., and Hyman, S. E., 1995. Proenkephalin gene regulation in the neuroendocrine hypothalamus: a model of gene regulation in CNS. Am. J. Physiol. 269:E393-E408.

    PubMed  Google Scholar 

  121. Schafer, M., Mousa, S. A., and Stein, C., 1997. Corticotropin-releasing factor in antinociception and inflammation. Europ. J. Pharmacol. 323:1-10.

    Google Scholar 

  122. Harsing, L. G. J., Yang, H. Y., and Costa, E., 1982. Accumulation of hypothalamic endorphins after repeated injections of anorectics which release serotonin. J. Pharmacol. Exptl. Therap. 223:689-694.

    Google Scholar 

  123. Kmieciak-Kolada, K., and Kowalski, J., 1986. Involvement of the central serotonergic system in the changes of leu-enkephalin level in discrete rat brain areas. Neuropeptides 7:351-360.

    PubMed  Google Scholar 

  124. Majeed, N. H., Lason, W., Pizewlocka, B., and Pizwlocki, R., 1986. Involvement of endogenous opioid peptides in fenfluramine anorexia. Pharmacol. Biochem. Behav. 25:967-972.

    PubMed  Google Scholar 

  125. Bloom, F., Battenberg, E., Rossier, J., Ling, N., and Guillemin, R., 1978. Neurons containing B-endorphin in rat brain exist separately from those containing enkephalin: Immunocytochemical studies. Proc. Natl. Acad. Sci. USA 75:1591-1595.

    PubMed  Google Scholar 

  126. Morley, J. E., 1980. The neuroendocrine control of appetite: the role of the endogenous opiates, cholecystokinin, TRH, gamma-aminobutyric-acid and the diazepam receptor. Life Sci. 27:355-368.

    PubMed  Google Scholar 

  127. Foresta, C., Mioni, R., and Scandellari, C., 1986. Evidence for serotonergic system involvement in opioid control of luteinizing hormone secretion in man. Clin. Endocrinol. 25:573-578.

    Google Scholar 

  128. Caron, R. W., and Deis, R. P., 1996. Participation of opioid and serotonergic systems in prolactin secretion induced by hypothalamic action of estradiol. Neuroendocrinol. 64:124-130.

    Google Scholar 

  129. Wang, Q. P., and Nakai, Y., 1994. The dorsal raphe: an important nucleus in pain modulation. Brain Res. Bull. 34:575-585.

    PubMed  Google Scholar 

  130. Sher, E., Cesare, P., Codignola, A., Clementi, F., Tarroni, P., Pollo, A., Magnelli, V., and Carbone, E., 1996. Activation of δ-opioid receptors inhibits neuronal-like calcium channels and distal steps of CA2+-dependent secretion in human small-cell lung carcinoma cells. J. Neurosci. 16:3672-3684.

    PubMed  Google Scholar 

  131. Kondo, Y., Ogawa, N., Asanuma, M., Hirata, H., Tanaka, K., Kawada, Y., and Mori, A., 1993. Regional changes in neuropeptide levels after 5,7-dihydroxytryptamine-induced serotonin depletion in the rat brain. J. Neural Transm. 92:151-157.

    Google Scholar 

  132. Morris, B. J., Reimer, S., Hollt, V., and Herz, A., 1988. Regulation of striatal prodynorphin mRNA levels by the raphe-striatal pathway. Brain Res. 464:15-22.

    PubMed  Google Scholar 

  133. Daunais, J. B., Hart, S. L., Hedgecock-Rowe, A., Matasi, J. J., Thornley, C., Davies, H. M., and Porrino, L. J., 1997. Alterations in behavior and opioid gene expression induced by the novel tropane analog WF-31. Molec. Brain Res. 50:293-304.

    PubMed  Google Scholar 

  134. Akira, S., and Kishimoto, T., 1992. IL-6 and NF-IL6 in acutephase response and viral infection. Immunol. Rev. 127:25-50.

    PubMed  Google Scholar 

  135. Klein, B., Zhang, X. G., Lu, Z. Y., and Bataille, R., 1995. Interleukin-6 in human multiple myeloma. Blood 85:863-872.

    PubMed  Google Scholar 

  136. Vandenbeele, P., and Fiers, W., 1991. Is amyloidogenesis during Alzheimer's disease due to an IL-1/IL-6 mediated “acute phase response” in the brain? Immunol. Today 12:217-219.

    PubMed  Google Scholar 

  137. Wood, J. A., Wood, P. L., Ryan, R., Graff-Radford, N. R., Pilapil, C., Robitaille, Y., and Quirion, R., 1993. Cytokine induces in Alzheimer's temporal cortex: no changes in mature IL-1β or IL-IRA but increases in the associated acute phase proteins IL-6, α2-macroglobulin and C-reactive protein. Brain Res. 629:245-252.

    PubMed  Google Scholar 

  138. McClain, C., Cohen, D., Phillips, R., Ott, L., and Young, B., 1991. Increased plasma and ventricular fluid interleukin-6 levels in patients with head injury. J. Lab. Clin. Med. 118:225-231.

    PubMed  Google Scholar 

  139. Hartung, H. P., Jung, S. F., Stoll, G., Zielasek, J., Schmidt, B., Archelos, J. J., and Toyka, K. V., 1992. Inflammatory mediators in demyelinating disorders of the CNS and PNS. J. Neuroimmunol. 40:197-210.

    PubMed  Google Scholar 

  140. Fauci, A. S., 1993. Multifactorial nature of human immunodeficiency virus disease: implications for therapy. Science 262:1011-1018.

    PubMed  Google Scholar 

  141. Maes, M., 1995. Evidence for an immune response in major depression: a review and hypothesis. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 19:11-38.

    Google Scholar 

  142. Ganguli, R., Yang, Z. W., Shurin, G., Chengappa, K. N. R., Brar, J. S., Gubbi, A. V., and Rabin, B. S., 1994. Serum interleukin-6 concentration in schizophrenia-elevation associated with duration of illness. Psychiat. Res. 51:1-10.

    Google Scholar 

  143. Pomeroy, C., Eckert, E., Hu, S., Eiken, B., Mentink, M., Crosby, R. D., and Chao, C. C., 1994. Role of interleukin-6 and transforming growth factor-β in anorexia nervosa. Biol. Psychiat. 36:836-839.

    PubMed  Google Scholar 

  144. Woodroofe, M. N., Sarna, G. S., Wadhwa, M., Hayes, G. M., Loughlin, A. J., Tinker, A., and Cuzner, M. L., 1991. Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J. Neuroimmunol. 33:227-236.

    PubMed  Google Scholar 

  145. Rothwell, N. J., and Relton, J. K., 1993. Involvement of cytokines in acute neurodegeneration in the CNS. Neurosci. Biobehav. Rev. 17:217-227.

    PubMed  Google Scholar 

  146. Jarskog, L. F., Xiao, H., Wilkie, M. B., Lauder, J. M., and Gilmore, J. H., 1997. Cytokine regulation of embryonic rat dopamine and serotonin neuronal survival in vitro. Intl. J. Dev. Neurosci. 15:711-716.

    Google Scholar 

  147. Lin, M. T., 1997. Heatstroke-reduced cerebral ischemia and neuronal damage. Involvement of cytokines and monoamines. Ann. N. Y. Acad. Sci. 813:572-580.

    PubMed  Google Scholar 

  148. Campbell, L. L., Mucke, L., and Sandberg, K., 1993. Cerebral overexpression of interleukin-6 or interferon-α1 induces distinct neuropathology in transgenic mice. Soc. Neurosci. Abstr. 19:225.

    Google Scholar 

  149. Hart, B. L., 1988. Biological basis of the behavior of sick animals. Neurosci. Biobehav. Rev. 12:123-137.

    PubMed  Google Scholar 

  150. Kent, S., Bluthé, R.-M., Kelley, K. W., and Dantzer, R., 1992. Sickness behavior as a new target for drug development. TIPS 13:24-28.

    PubMed  Google Scholar 

  151. Weingarten, H. P., 1996. Cytokines and food intake: the relevance of the immune system to the student of ingestive behavior. Neurosci. Biobehav. Rev. 20:163-170.

    PubMed  Google Scholar 

  152. Swiergiel, A. H., Smagin, G. N., Johnson, L. J., and Dunn, A. J., 1997. The role of cytokines in the behavioral responses to endotoxin and influenza virus infection in mice: effects of acute and chronic administration of the interleukin-1-receptor antagonist (IL-1ra). Brain Res. 776:96-104.

    PubMed  Google Scholar 

  153. Lenczowski, M. J. P., Bluthé, R. M., Roth, J., Rees, G. S., Rushforth, D. A., Van Dam, A. M., Tilders, F. J. H., Dantzer, R., Rothwell, N. J., and Luheshi, G. N., 1999. Central administration of rat interleukin-6 induces hypothalamus-pituitary-adrenal activation and fever but not sickness behavior in rats. Am. J. Physiol. in press

  154. Plata-Salamán, C. R., 1998. Cytokine induced anorexia. Behavioral, cellular and molecular mechanisms. Ann. N.Y. Acad. Sci. 856

  155. Swiergiel, A. H., Burunda, T., Peterson, B., and Dunn, A. J., 1999. Endotoxin-and interleukin-1-induced hypophagia are not affected by noradrenergic, dopaminergic, histaminergic and muscarinic antagonists. Pharmacol. Biochem. Behav. in press

  156. Swiergiel, A. H., and Dunn, A. J., submitted for publication. Lack of evidence for a role of serotonin in interleukin-1-induced hypophagia. Pharmacol. Biochem. Behav.

  157. Mantovani, G., Maccio, A., Lai, P., Massa, E., Ghiani, M., and Santona, M. C., 1998. Cytokine activity in cancer-related anorexia/cachexia: role of megestrol acetate and medroxyprogesterone acetate. Semin. Oncol. 25:45-52.

    PubMed  Google Scholar 

  158. Yamada, M., and Hatanaka, H., 1994. Interleukin-6 protects cultured rat hippocampal neurons against glutamate-induced cell death. Brain Res. 643:173-180.

    PubMed  Google Scholar 

  159. Toulmond, S., Vige, X., Fage, D., and Benavidas, J., 1992. Local infusion of interleukin-6 attenuates the neurotoxic effects of NMDA on rat striatal cholinergic neurons. Neurosci. Letts 144:49-52.

    Google Scholar 

  160. Frei, K., Malipiero, U. V., Leist, T. P., Zinkernagel, R. M., Schwab, M. E., and Fontana, A., 1989. On the cellular source and function of interleukin-6 produced in the central nervous system in viral disease. Europ. J. Immunol. 19:689-694.

    Google Scholar 

  161. Maeda, Y., Matsumoto, M., Hori, O., Kuwabara, K., Ogawa, S., Yan, S. D., Ohtsuki, T., Kinoshita, T., Kamada, T., and Stern, D. M., 1994. Hypoxia/reoxygenation-mediated induction of astrocyte interleukin-6: a paracrine mechanism potentially enhancing neuron survival. J. Exptl. Med. 180:2297-2308.

    Google Scholar 

  162. Sei, Y., Vitkovic, L., and Yokoyama, M. M., 1995. Cytokines in the central nervous system: regulatory roles in neuronal function, cell death and repair. Neuroimmunomodulation 2:121-133.

    PubMed  Google Scholar 

  163. Greenamyre, J. T., and Young, A. B., 1989. Excitatory amino acids and Alzheimer's disease. Neurobiol. Aging 10:593-602.

    PubMed  Google Scholar 

  164. Choi, D. W., 1992. Excitotoxic cell death. J. Neurobiol. 23:1261-1276.

    PubMed  Google Scholar 

  165. Lipton, S. A., 1992. Models of neuronal injury in AIDS: another role for the NMDA receptor? Trends Neurosci. 15:75-79.

    PubMed  Google Scholar 

  166. Qui, Z., Parsons, K. L., and Gruol, D. L., 1995. Interleukin-6 selectively enhances the intracellular calcium response to NMDA in developing CNS neurons. J. Neurosci. 15:6688-6699.

    PubMed  Google Scholar 

  167. Lipton, S. A., 1996. Similarity of neuronal cell injury and death in AIDS dementia and focal cerebral ischemia: potential treatment with NMDA open-channel blockers and nitric oxide-related species. Brain Pathol. 6:507-517.

    PubMed  Google Scholar 

  168. Whitton, P. S., Richards, D. A., Biggs, C. S., and Fowler, L. J., 1994. N-Methyl-D-aspartate receptors modulate extracellular 5-hydroxytryptamine concentration in rat hippocampus and striatum in vivo. Neurosci. Letts. 169:215-218.

    Google Scholar 

  169. Aghajanian, G. K., and Marek, G. L., 1997. Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacol. 36:589-599.

    Google Scholar 

  170. Robson, R. L., Westwick, J., and Brown, Z., 1995. Interleukin-1-induced IL-8 and IL-6 gene expression and production in human mesangial cells is differentially regulated by cAMP. Kidney Intl. 48:1767-1777.

    Google Scholar 

  171. Kiriyama, Y., Murayama, T., Tokumitsu, Y., and Nomura, Y., 1997. Protein kinase A-dependent IL-6 production induced by calcitonin in human glioblastoma A172 cells. J. Neuroimmunol. 76:139-144.

    PubMed  Google Scholar 

  172. Itoi, K., Horiba, N., Tozawa, F., Sakai, Y., Sakai, K., Abe, K., Demur, H., and Suda, T., 1996. Major role of 3′,5′-cyclic adenosine monophosphate-dependent protein kinase A pathway in corticotropin-releasing factor gene expression in the rat hypothalamus in vivo. Endocrinol. 137:2389-2396.

    Google Scholar 

  173. Takao, T., Hashimoto, K., and De Souza, E. B., 1995. Modulation of interleukin-1 receptors in the brain-endocrine-immune axis by stress and infection. Brain Behav. Immun. 9:276-291.

    PubMed  Google Scholar 

  174. Behan, D. P., Grigoriadis, D. E., Lovenberg, T., Chalmers, D., Heinrichs, S., Liaw, C., and DeSouza, E. B., 1996. Neurobiology of corticotropin releasing factor (CRF) receptors and CRF-binding protein: Implications for the treatment of CNS disorders. Molec. Psychiat. 1:265-277.

    Google Scholar 

  175. Heldwein, K. A., Redick, D. L., Rittenberg, M. B., Claycomb, W. C., and Stenzel-Poore, M. P., 1996. Corticotropin-releasing hormone receptor expression and functional coupling in neonatal cardiac myocytes and AT-1 cells. Endocrinol. 137:3631-3639.

    Google Scholar 

  176. Saitoh, M., Hasegawa, J., and Mashiba, H., 1990. Effect of corticotropin-releasing factor on the electrical and mechanical activities of the guinea-pig ventricular myocardium. Gen. Pharmacol. 21:337-342.

    PubMed  Google Scholar 

  177. Vlaskovska, M., Schramm, M., Nylander, I., Kasakov, L., You, Z. B., Herrera-Marschitz, M., and Terenius, L., 1997. Opioid effects on 45CA2+ uptake and glutamate release in rat cerebral cortex in primary culture. J. Neurochem. 68:517-524.

    PubMed  Google Scholar 

  178. Vaughan, C. W., and Christie, M. J., 1997. Presynaptic inhibitory action of opioids on synaptic transmission in the rat periaqueductal grey in vitro. J. Physiol. 498:463-472.

    PubMed  Google Scholar 

  179. Mayer, D. L., Mao, J., and Price, D. D., 1995. The development of morphine tolerance and dependence is associated with translocation of protein kinase C. Pain 61:365-374.

    PubMed  Google Scholar 

  180. Ventura, C., Maioli, M., Pintus, G., Posadino, A. M., and Tadolini, B., 1998. Nuclear opioid receptors activate opioid peptide gene transcription in isolated myocardial nuclei. J. Biol. Chem. 273:13383-13386.

    PubMed  Google Scholar 

  181. Contesse, V., Hamel, C., Lefebvre, H., Dumuis, A., Vaudry, H., and Delarue, C., 1996. Activation of 5-hydroxytryptamine4 receptors causes calcium influx in adrenocortical cells: involvement of calcium in 5-hydroxytryptamine-induced steroid secretion. Molec. Pharmacol. 49:481-493.

    Google Scholar 

  182. Rorig, B., and Sutor, B., 1996. Regulation of gap junction coupling in the developing neocortex. Molec. Neurobiol. 12:225-249.

    Google Scholar 

  183. Chalecka-Franaszek, E., Chen, H., and Chuang, D.-M., 1999. 5-Hydroxytrytamine2A receptor stimulation induces activator protein-1 and cyclic AMP-responsive element binding with cyclic AMP-responsive element-binding protein and jun D as common components in cerebellar neurons. Neurosci. 88:885-898.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barkhudaryan, N., Dunn, A.J. Molecular Mechanisms of Actions of Interleukin-6 on the Brain, with Special Reference to Serotonin and the Hypothalamo-Pituitary-Adrenocortical Axis. Neurochem Res 24, 1169–1180 (1999). https://doi.org/10.1023/A:1020720722209

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020720722209

Navigation