Skip to main content
Log in

The Sequential Mechanism of Guanidine Hydrochloride-Induced Denaturation of cAMP Receptor Protein from Escherichia coli. A Fluorescent Study Using 8-Anilino-1-Naphthalenesulfonic Acid

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

cAMP receptor protein (CRP) regulates expression of a number of genes in Escherichia coli. The protein is a homodimer and each monomer is folded into two structural domains. The biological activation of CRP upon cAMP binding may involve the subunit realignment as well as reorientation between the domains within each subunit. In order to study the interactions between the subunits or domains, we performed stopped-flow measurements of the guanidine hydrochloride (GuHCl)-induced denaturation of CRP. The changes in CRP structure induced by GuHCl were monitored using both intrinsic Trp fluorescence as well as the fluorescence of an extrinsic probe, 8-anilino-1-Naphthalenesulfonic acid (ANS). Results of CRP denaturation using Trp fluorescence detection are consistent with a two-step model [Malecki, and Wasylewski, (1997), Eur. J. Biochem. 243, 660], where the dissociation of dimer into subunits is followed by the monomer unfolding. The denaturation of CRP monitored by ANS fluorescence reveals the existence of two additional processes. One occurs before the dissociation of CRP into subunits, whereas the second takes place after the dissociation, but prior to proper subunit unfolding. These additional processes suggest that CRP denaturation is described by a more complicated mechanism than a simple three-state equilibrium and may involve additional changes in both inter- and intrasubunit interactions. We also report the effect of cAMP on the kinetics of CRP subunit unfolding and refolding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aiba, H., Fujimoto, S., and Ozaki, N. (1982). Molecular cloning and nucleotide sequencing of the gene for E. coli cAMP receptor protein, Nucleic Acids Res. 10, 1345–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernasconi, C. F. (1976). Relaxation Kinetics, Academic Press, New York.

    Google Scholar 

  • Cheng, X., Gonzales, M. L., and Lee, J. C. (1993). Energetics of intersubunit and intrasubunit interactions of Escherichia coli adenosine cyclic 3′–5′-phosphate receptor protein, Biochemistry 32, 8130–8139.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, X., Kovac, L., and Lee, J. C. (1995). Probing the mechanism of CRP activation by site-directed mutagenesis: The role of serine 128 in the allosteric pathway of cAMP receptor protein, Biochemistry 34, 10816–10826.

    Article  CAS  PubMed  Google Scholar 

  • de Crombrugghe, B., Busby, S., and Buc, H. (1984). Cyclic AMP receptor protein: Role in transcription activation, Science 224, 831–838.

    Article  CAS  PubMed  Google Scholar 

  • Donoso-Pardo, J. L., Turner, P. C., and King, R. W. (1987). Cyclic nucleotide binding to cAMP receptor protein from Escherichia coli. Optical and ligand-binding studies, Eur. J. Biochem. 168, 687–694.

    Article  CAS  PubMed  Google Scholar 

  • Fergusson, R. N., Edelhoch, H., Saroff, H. A., Robbins, J., and Cahnmann, H. J. (1975). Negative cooperativity in the binding of thyroxine to human serum prealbumin. Preparation of tritium-labeled 8-anilino-1-naphtalenesulfonic acid, Biochemistry 14, 282–289.

    Article  Google Scholar 

  • Gerl, M., Jaenicke, R., Smith, J. M. A., and Harrison, P. M. (1988). Self-assembly of apoferritin from horse spleen after reversible chemical modification with 2,3-dimethylmaleic anhydride, Biochemistry 27, 4089–4096.

    Article  CAS  PubMed  Google Scholar 

  • Ghosaini, L. R., Brown, A. M., and Sturtevant, J. M. (1988). Scanning calorimetry study of the thermal unfolding of catabolite activator protein from Escherichia coli in the absence and presence of cyclic mononucleotides, Biochemistry 27, 5257–5261.

    Article  CAS  PubMed  Google Scholar 

  • Gittelman, M. S., and Matthews, C. R. (1990). Folding and stability of Trp aporepresor from Escherichia coli, Biochemistry 29, 7011–7020.

    Article  CAS  PubMed  Google Scholar 

  • Heyduk, T., and Lee, J. C. (1989). Escherichia coli cAMP receptor protein: Evidence for three protein conformational states with different promoter binding activities, Biochemistry 28, 6914–6924.

    Article  CAS  PubMed  Google Scholar 

  • Horowitz, P. M., and Criscimagna, N. L. (1985). Differential binding of the fluorescent probe 8-anilinonaphtalene-2 sulfonic acid to rhodanese catalytic intermediates, Biochemistry 24, 2587–2593.

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke, R., (1991). Local structures, domains, subunits and assemblies, Biochemistry 30, 3147–3161.

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke, R., Rudolf, R., and Feingold, D. S. (1986). Dissociation and in vitro reconstitution of bovine liver uridine diphosphoglucose dehydrogenase. The paired subunit nature of the enzyme, Biochemistry 25, 7283–7287.

    Article  CAS  PubMed  Google Scholar 

  • Malecki, J., and Wasylewski, Z. (1997). Stability and kinetics of unfolding and refolding of cAMP receptor protein from Escherichia coli, Eur. J. Biochem. 243, 660–669.

    Article  CAS  PubMed  Google Scholar 

  • Malecki, J., and Wasylewski, Z. (1998). The effect of Ser 128 substitution on the structure and stability of cAMP receptor protein from Escherichia coli, J. Protein Chem., 17, 219–228.

    Article  CAS  PubMed  Google Scholar 

  • Matthews, C. R. (1987). Effect of point mutations on the folding of globular proteins, Meth. Enzymol. 154, 498–511.

    Article  CAS  Google Scholar 

  • McKay, D. B., Weber, I. T., and Steitz, T. A. (1982). Structure of catabolite gene activator protein at 2.9 A resolution, J. Biol. Chem. 257, 9518–9524.

    Article  CAS  PubMed  Google Scholar 

  • Pace, C. N. (1986). Determination and analysis of urea and guanidine hydrochloride denaturation curves, Meth. Enzymol. 131, 266–280.

    Article  CAS  Google Scholar 

  • Passner, J. M., and Steitz, T. A. (1997). The structure of a CAP-DNA complex having two cAMP molecules bound to each monomer, Proc. Natl. Acad. Sci. USA 94, 2843–2847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reznikoff, W. S. (1992). Catabolite gene activator protein activation of lac transcription, J. Bacteriol. 174, 655–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu, S., Kim, J., Adhya, S., and Garges, S. (1993). Pivotal role of amino acid at position 138 in the allosteric hinge reorientation of cAMP receptor protein, Proc. Natl. Acad. Sci. USA 90, 75–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz, S., Shields, G., and Steitz, T. (1991). Crystal structure of a CAP-DNA complex: The DNA is bent by 90 degrees, Science 253, 1001–1007.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, M., Blazy, B., and Baudras, A. (1980). An equilibrium study of the cooperative binding of adenosine cyclic 3′,5′-mono-phosphate and guanosine cyclic 3′,5′-monophosphate to the adenosine cyclic 3′,5′-monophosphate receptor protein from Escherichia coli, Biochemistry 19, 5124–5130.

    Article  CAS  PubMed  Google Scholar 

  • Uversky, V. N., Winter, S., and Lober, G. (1996). Use of fluorescence decay times of 8-ANS-protein complexes to study the conformational transitions in proteins which unfold through the molten globule state, Biophys. Chem. 60, 79–88.

    Article  CAS  PubMed  Google Scholar 

  • Wasylewski, M., Malecki, J., and Wasylewski, Z. (1995). Fluorescence study of Escherichia coli cyclic AMP receptor protein, J. Protein Chem. 14, 299–308.

    Article  CAS  PubMed  Google Scholar 

  • Weber, I. T., and Steitz, T. A. (1987). Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 A resolution, J. Mol. Biol. 198, 311–326.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y. L., Zhou, J. M., and Tsou, C. L. (1996). Sequential unfolding of adenylate kinase during denaturation by guanidine hydrochloride, Biochem. Biophys. Acta 1295, 239–244.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malecki, J., Wasylewski, Z. The Sequential Mechanism of Guanidine Hydrochloride-Induced Denaturation of cAMP Receptor Protein from Escherichia coli. A Fluorescent Study Using 8-Anilino-1-Naphthalenesulfonic Acid. J Protein Chem 17, 745–755 (1998). https://doi.org/10.1023/A:1020718016274

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020718016274

Navigation