Skip to main content
Log in

Effects of L-Tryptophan on Indoleamines and Catecholamines in Discrete Brain Regions of Wild Type and Lurcher Mutant Mice

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The biochemical parameters of the serotoninergic system were examined in wild type mice and Lurcher mutants after chronic treatment (40 days) with the serotonin (5-HT) precursor L-tryptophan (50 mg/kg; i.p.). Tissue contents in 5-HT, dopamine and noradrenaline, as well as some of their metabolites, were measured in frontal cortex, neostriatum, thalamus, brainstem, cerebellum and spinal cord by high-performance liquid chromatography. The tissue levels were used as a biochemical index of the function of the monoamine innervations in this animal model of cerebellar ataxia. The results show that Lurcher mutants retain higher concentrations of L-tryptophan and total indoleamines, but that 5-HT is probably stored in a non-releasable compartment. In the particular case of the hypoplastic cerebellum, the reorganization of 5-HT nerve terminals leads to an accrued indoleamine synthesis, indicating that the Lurcher mutants can accumulate 5-HT, but do not utilize it efficiently in synaptic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Caddy, K. W. T., and Biscoe, T. J. 1979. Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Phil. Trans. Roy. Soc. London (Biol. Series) 287:167-201.

    Google Scholar 

  2. Heckroth, J. A., and Eisenman, L. M. 1991. Olivary morphology and olivocerebellar pathology in adult Lurcher mutant mice. J. Comp. Neurol. 312:641-651.

    PubMed  Google Scholar 

  3. Heckroth, J. A. 1994. Development of glutamic acid decarboxylase-immunoreactive elements in the cerebellar cortex of normal and Lurcher mutant mice. J. Comp. Neurol. 315:85-87.

    Google Scholar 

  4. Heckroth, J. A. 1994. A quantitative morphological analysis of the cerebellar nuclei in normal and Lurcher mutant mice. I. Morphology and cell number. J. Comp. Neurol. 343:173-182.

    PubMed  Google Scholar 

  5. Wetts, R., and Herrup, K. 1982. Interaction of granule, Purkinje and inferior olivary neurons in Lurcher chimeric mice. I. Quantitative studies. J. Embryol. Exp. Morphol. 68:87-98.

    PubMed  Google Scholar 

  6. Resibois, A., Cuvelier, L., and Goffinet, A. M. 1997. Abnormalities in the cerebellum and brainstem in homozygous Lurcher mice. Neuroscience 80:175-190.

    PubMed  Google Scholar 

  7. Cheng, S. S.-W., and Heinz, N. 1997. Massive loss of mid-and hindbrain neurons during embryonic development of homozygous Lurcher mice. J. Neurosci. 17:2400-2407.

    PubMed  Google Scholar 

  8. Lalonde, R., Botez, M. I., Joyal, C. C., and Caumartin, M. 1992. Motor abnormalities in Lurcher mutant mice. Physiol. Behav. 51:523-525.

    PubMed  Google Scholar 

  9. Strazielle, C., Lalonde, R., Riopel, L., Botez, M. I., and Reader, T. A. 1996. Regional distribution of the 5-HT innervation in the brain of normal and lurcher mice as revealed by [3H] citalopram quantitative autoradiography. J. Chem. Neuroanat. 10:157-171.

    PubMed  Google Scholar 

  10. Campanella, G., Filla, A., De Falco, F., Mansi, D., Durivage, A., and Barbeau, A. 1980. Friedreich's ataxia in the south of Italy: a clinical and biochemical survey of 23 patients. Can. J. Neurol. Sci. 7:351-357.

    PubMed  Google Scholar 

  11. Botez, M. I., Botez-Marquard, T., Meyer, P., Marchand L., Lalonde, R., and Reader, T. A. 1998. Treatment of spinocerebellar ataxias: facts and hypothesis. Med. Hypoth. 51:381-384.

    Google Scholar 

  12. Plaitakis, A. 1993. Modulation of monoaminergic and amino acid transmission as a means for therapeutic intervention in ataxia. Can. J. Neurol. Sci. 20:S105-S108.

    PubMed  Google Scholar 

  13. Trouillas, P. 1993. The serotonergic hypothesis of cerebellar ataxia and its pharmacological consequences pages 323-324, in Trouillas, P., and Fuxe, K., eds. Serotonin, the Cerebellum, and Ataxia. New York: Raven Press Ltd.

    Google Scholar 

  14. Trouillas, P., Garde, A., Robert, J. M., Adelaine, P., Bard, J., and Brudon, F. 1980. Régression du syndrome cérébelleux sous administrations à long terme de L-5-HTP ou de l'association 5HTP-bensérazide: 25 observations quantifiées et traitées par ordinateur. Rev. Neurol. 12:891.

    Google Scholar 

  15. Trouillas, P., Brudon, F., and Adeleine, P. 1988. Improvement of cerebellar ataxia with levorotary form of 5-hydroxytryptophan. A double-blind study with quantified data processing. Arch. Neurol. 45:1217-1222.

    PubMed  Google Scholar 

  16. Lou, J. S., Goldfard, L., McShane, L., Gatee, P., and Hallett, M. 1995. Use of buspirone for treatment of cerebellar ataxia, an open-label study. Arch. Neurol. 52:982-988.

    PubMed  Google Scholar 

  17. Trouillas, P., Serratrice, G., Laplane, D., Rascol, A., Augustin, P., Barroche, G., Clanet, M., Degos, C., Desnuelle, C., Dumas, R., Michel, D., Viallet, F., Warter, J. M., and Adeleine, P. 1995. Levorotatory form of 5-hydroxytryptophan in Friedreich's ataxia. Arch. Neurol. 52:456-460.

    PubMed  Google Scholar 

  18. Wessel, K., Hermsdörfer, J., Deger, K., Herzog, T., Huss, G. P., Kömpf, D., Mai, N., Schimrigk, K., Wittkämper, A., and Ziegler, W. 1995. Double-blind crossover study with levorotatory form of hydroxytryptophan in patients with degenerative cerebellar diseases. Arch. Neurol. 52:451-455.

    PubMed  Google Scholar 

  19. Chan-Palay, V., Plaitakis, A, Nicklas, W., and Berl, S. 1977. Autoradiographic demonstration of loss of labeled Indoleamines axons of the cerebellum in chronic diet-induced thiamine deficiency. Brain Res. 138:380-384.

    PubMed  Google Scholar 

  20. Plaitakis, A., Nicklas, W. J., and Berl, S. 1978. Thiamine deficiency: selective impairment of the cerebellar serotonergic system. Neurology (Minn.) 28:691-698.

    Google Scholar 

  21. Botez, M. I., Young, S. N., Botez, T, and Pedraza, O. L. 1991. Treatment of heredo-degenerative ataxia with amantadine hydrochloride. Can. J. Neurol. Sci. 18:307-311.

    PubMed  Google Scholar 

  22. Botez, M. I., Botez-Marquard, T., Élie, R., Pedraza, O. L., Goyette, K., and Lalonde, R. 1996. Amantadine hydrochloride treatment in heredo-degenerative ataxia. A double blind study. J. Neurol. Neurosurg. Psychiat. 31:259-264.

    Google Scholar 

  23. Peterson, P. L., Saad, J., and Nigro, M. A. 1988. The treatment of Friedreich's ataxia with amantadine hydrochloride. Neurology 38:1478-1480.

    PubMed  Google Scholar 

  24. Botez, M. I., Meyer, P., Bellemare, F., and Couture, J. 1997. Can we treat respiratory failure in Friedreich ataxia? Arch. Neurol. 54:1030-1033.

    PubMed  Google Scholar 

  25. Reader, T. A., and Grondin, L. 1987. Distribution of catecholamines, and their major metabolites in rat cingulate, piriform-entorhinal, somatosensory and visual cortex: a biochemical survey using high-performance liquid chromatography. Neurochem. Res. 12:1087-1097.

    PubMed  Google Scholar 

  26. Franklin, K. B. J., and Paxinos, G. 1997. The Mouse Brain in Stereotaxic Coordinates. Academic Press Inc., San Diego.

    Google Scholar 

  27. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193:265-275.

    PubMed  Google Scholar 

  28. Sauvé, Y., and Reader, T. A. 1988. Effects of α-methyl-p-tyrosine on monoamines and catecholamine receptors in rat cerebral cortex and neostriatum. Neurochem. Res. 13:807-815.

    PubMed  Google Scholar 

  29. Molina-Holgado, E., Dewar, K. M., Descarries, L., and Reader, T. A. 1994. Altered dopamine and serotonin metabolism in the dopamine-denervated and serotonin-hyperinnervated neostriatum of adult rat after neonatal 6-hydroxydopamine. J. Pharmacol. Exp. Ther. 270:713-721.

    PubMed  Google Scholar 

  30. Reader, T. A., Dewar, K. M., and Grondin, L. 1989. Distribution of monoamines and metabolites in rabbit neostriatum, hippocampus and cortex. Brain Res. Bull. 23:237-247.

    PubMed  Google Scholar 

  31. Ase, A. R., Amdiss, F., Hébert, C., Huang, N., van Gelder, N. M., and Reader, T. A. 1999. Effects of antipsychotic drugs on dopamine and serotonin contents and metabolites, dopamine and serotonin transporters, and serotonin1A receptors. J. Neural Transm. 106:75-105.

    PubMed  Google Scholar 

  32. Barlow, R. B. 1983. Biodata Handling with Microcomputers. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  33. Frank, L., and Althoen, S. C. 1994. Statistics: Concepts and Applications. Cambridge University Press, New York.

    Google Scholar 

  34. Fernstrom, J. D., and Wurtman, R. J. 1971. Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 173:149-151.

    PubMed  Google Scholar 

  35. Fernstrom, J. D., and Wurtman, R. J. 1972. Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 178:414-416.

    PubMed  Google Scholar 

  36. Carlsson, A., and Lindqvist, M. 1978. Dependence of 5-HT and catecholamine synthesis on concentrations of precursor amino acids in rat brain. Naunyn Schmiedeberg's Arch. Pharmacol. 303:157-164.

    Google Scholar 

  37. Lookingland, K. J., Shannon, N. J., Chapin, D. S., and Moore, K. E. 1986. Exogenous tryptophan increases synthesis, storage and extraneuronal metabolism of 5-hydroxytryptamine in the rat hypothalamus. J. Neurochem. 47:205-212.

    PubMed  Google Scholar 

  38. De Simoni, M. G., Sokola, A., Fodritto, F., Dal Toso, G., and Algeri, S. 1987. Functional meaning of tryptophan-induced increase of 5-HT metabolism as clarified by in vivo voltammetry. Brain Res. 441:89-94.

    Google Scholar 

  39. De Simoni, M. G., Giglio, R., Dal Toso, G., Kostowski, W., and Algeri, S. 1985. Interaction between serotonergic and dopaminergic systems detected in striatum by differential pulse voltammetry. Eur. J. Pharmacol. 110:289-290.

    PubMed  Google Scholar 

  40. Green, A. R. 1984. 5-HT mediated behaviour. Animal studies. Neuropharmacology 23:1521-1528.

    Google Scholar 

  41. Bakalian, M. J., and Fernstrom, J. D. 1990. Effects of L-tryptophan and other amino acids on electroencephalography sleep in the rat. Brain Res. 528:300-307.

    PubMed  Google Scholar 

  42. Vojcik, W. J., Formal, C., and Radulovacki, M. 1980. Effect of tryptophan on sleep in the rat. Neuropharmacology 19:163-167.

    PubMed  Google Scholar 

  43. Ohsugi, K., Adachi, K., and Ando, K. 1986. Serotonin metabolism in the CNS in cerebellar ataxic mice. Experientia 42:1245-1247.

    PubMed  Google Scholar 

  44. Ghetti, B., Perry, K. W., and Fuller, R. W. 1988. Serotonin concentration and turnover in cerebellum and other brain regions of pcd mutant mice. Brain Res. 458:367-371.

    PubMed  Google Scholar 

  45. Triarhou, L. C., and Ghetti, B. 1986. Monoaminergic nerve terminals in the cerebellar cortex of Purkinje cell degeneration mutant mice: fine structural integrity and modification of cellular environs following loss of Purkinje and granule cells. Neuroscience 18:795-807.

    PubMed  Google Scholar 

  46. Modigh, K. 1972. Central and peripheral effects of 5-hydroxytryptophan on motor activity in mice. Psychopharmacologia 23:48-54.

    PubMed  Google Scholar 

  47. Kish, S. J., Robitaille, Y., Shut, L., El-Awar, M., Ball, M. J., and Shannak, K. 1992. Normal serotonin but elevated 5-hydroxyindoleacetic acid concentration in cerebellar cortex of patients with dominantly-inherited olivopontocerebellar atrophy. Neurosci. Lett. 144:84-86.

    PubMed  Google Scholar 

  48. Lalonde, R., Joyal, C. C., Guastavino, J.-M., Côté, C, and Botez, M. I. 1993. Amantadine and ketamine-induced improvement of motor coordination in Lurcher mutant mice. Restor. Neurol. Neurosci. 5:367-370.

    Google Scholar 

  49. Reader, T. A., Strazielle, C., Botez, M. I., and Lalonde, R. 1998. Brain dopamine and amino acid concentrations in Lurcher mutant mice. Brain Res. Bull. 45:489-493.

    PubMed  Google Scholar 

  50. Strazielle, C., Lalonde, R., Amdiss, F., Botez, M. I., Hébert, C., and Reader, T. A. 1988. Distribution of dopamine transporters in basal ganglia of cerebellar ataxic mice by [125I]RTI-121 quantitative autoradiography. Neurochem. Int. 32:61-68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás A. Reader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reader, T.A., Le Marec, N., Ase, A.R. et al. Effects of L-Tryptophan on Indoleamines and Catecholamines in Discrete Brain Regions of Wild Type and Lurcher Mutant Mice. Neurochem Res 24, 1125–1134 (1999). https://doi.org/10.1023/A:1020708319483

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020708319483

Navigation