Skip to main content
Log in

Anisotropic Stars: Exact Solutions

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the effects of anisotropic pressure on the properties of spherically symmetric, gravitationally bound objects. We consider the full general-relativistic treatment of this problem and obtain exact solutions for various forms of the equation of state connecting the radial and tangential pressures. It is shown that pressure anisotropy can have significant effects on the structure and properties of stellar objects. In particular, the maximum value of 2M / R can approach unity (2M / R < 8/9 for isotropic objects) and the surface redshift can be arbitrarily large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Clayton, D. D. (1983). Principles of Stellar Evolution and Nucleosynthesis (The University of Chicago Press, Chicago).

  2. Kippenhahn, R. and Weigert, A. (1991). Stellar Structure and Evolution (Springer-Verlag, Berlin).

    Google Scholar 

  3. Glendenning, N. K. (1997). Compact Stars: Nuclear Physics, Particle Physics and General Relativity (Springer-Verlag, Berlin); Heiselberg, H. and Jensen, M. H. (2000). Phys. Rep. 328, 237.

    Google Scholar 

  4. Ruderman, M. (1972). Ann. Rev. Astron. Astrophys. 10, 427.

    Google Scholar 

  5. Canuto, V. (1974). Annu. Rev. Astron. Astrophys. 12, 167.

    Google Scholar 

  6. For comprehensive reviews see, Liddle A. R. and Marsden, M. S. (1992). Int. J. Mod. Phys. D 1, 101; Jetzer, P. (1992). Phys. Rep. 220, 163; Mielke, E. W. and Schunck, F. E. (1998). In Proceedings of 8th M. Grossmann Meeting, T. Piran (Ed.) (World Scientific, Singapore).

    Google Scholar 

  7. Sawyer, R. and Scalapino, D. (1973). Phys. Rev. D 7, 382.

    Google Scholar 

  8. Bowers, R. L. and Liang, E. P. T. (1974). Astrophys. J. 188, 657.

    Google Scholar 

  9. de Leon, J. P. (1987). J. Math. Phys. 28, 1114.

    Google Scholar 

  10. Gokhroo M. and Mehra, A. (1994). Gen. Relativ. Gravit. 26, 75.

    Google Scholar 

  11. Bondi, H. (1992). Mon. Not. R. Astron. Soc. 259, 365.

    Google Scholar 

  12. Corchero, E. S. (1998). Class. Quantum Grav. 15, 3645.

    Google Scholar 

  13. Herrera, L. (1992). Phys. Lett. A 165, 206.

    Google Scholar 

  14. Herrera, L. and Santos, N. O. (1997). Phys. Rep. 286, 53.

    Google Scholar 

  15. Weinberg, S. (1972). Gravitation and Cosmology (Wiley, New York).

    Google Scholar 

  16. Tolman, R. C. (1930). Phys. Rev. 35, 875.

    Google Scholar 

  17. Hartle, J. B. and Thorne, K. (1968). Astrophys. J. 153, 803.

    Google Scholar 

  18. Misner, C. and Zalopsky, H. (1964). Phys. Rev. Lett. 12, 635.

    Google Scholar 

  19. Gleiser, M. (1988). Phys. Rev. D 38, 2376; Gleiser, M. and Watkins, R. (1989). Nucl. Phys. B vn319, 733.

    Google Scholar 

  20. Dev, K. and Gleiser, M. (in preparation). Anisotropic Stars: Perturbations.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dev, K., Gleiser, M. Anisotropic Stars: Exact Solutions. General Relativity and Gravitation 34, 1793–1818 (2002). https://doi.org/10.1023/A:1020707906543

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020707906543

Navigation