Skip to main content
Log in

Using Pair-Coupled Amino Acid Composition to Predict Protein Secondary Structure Content

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

The pair-coupled amino acid composition is introduced to predict the secondary structure contents of a protein. Compared with the existing methods all based on singlewise amino acid composition as defined in a 20D (dimensional) space, this represents a step forward to the consideration of the sequence coupling effect. The test results indicate that the introduction of the pair-coupled amino acid composition can significantly improve the prediction quality. It is anticipated that the concept of the pair-coupled amino acid composition can be used to simplify the formulation of sequence coupling (or sequence order) effects and to study many other features of proteins as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Anfinsen, C. G. (1973). Principles that govern folding of protein chains. Science, 181, 223-223.

    Article  CAS  PubMed  Google Scholar 

  • Bahar, I., Atilgan, A. R., Jernigan, R. L., and Erman, B. (1997). Understanding the recognition of protein structural classes by amino acid composition. Proteins, 29, 172-185.

    Article  CAS  PubMed  Google Scholar 

  • Bussian, B. M., and Sander, C. (1989). How to determine protein secondary structure in solution by Raman spectroscopy: Practical guide and test case DNase I. Biochemistry, 28, 4271-4277.

    Article  CAS  Google Scholar 

  • Chandonia, J. M., and Karplus, M. (1995). Neural networks for secondary structure and structural class prediction. Protein Science, 4, 275-285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou, K. C. (1993). A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins. Journal of Biological Chemistry, 268, 16938-16948.

    Article  CAS  PubMed  Google Scholar 

  • Chou, K. C. (1995a). A novel approach to predicting protein structural classes in a (20–1)-D amino acid composition space. Proteins: Structure, Function and Genetics, 21, 319-344.

    Article  CAS  Google Scholar 

  • Chou, K. C. (1995b). A sequence-coupled vector-projection model for predicting the specificity of GalNAc-transferase. Protein Science, 4, 1365-1383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou, K. C. (1996). Review: Prediction of human immunodeficiency virus protease cleavage sites in proteins. Analytical Biochemistry, 233, 1-14.

    Article  CAS  PubMed  Google Scholar 

  • Chou, K. C. (1997a). Prediction of β-turns. Journal of Peptide Research, 49, 120-144.

    Article  CAS  Google Scholar 

  • Chou, K. C. (1997b). Prediction and classification of α-turn types. Biopolymers, 42, 837-853.

    Article  CAS  PubMed  Google Scholar 

  • Chou, K. C., and Blinn, J. R. (1997). Classification and prediction of β-turn types. Journal of Protein Chemistry, 16, 575-595.

    Article  CAS  PubMed  Google Scholar 

  • Chou, K. C., and Maggiora, G. M. (1998). Domain structural class prediction. Protein Engineering, 11, 523-538.

    Article  CAS  PubMed  Google Scholar 

  • Chou, K. C., and Zhang, C. T. (1995). Review: Prediction of protein structural classes. Critical Reviews in Biochemistry and Molecular Biology, 30, 275-349.

    Article  CAS  PubMed  Google Scholar 

  • Chou, K. C., Liu, W., Maggiora, G. M., and Zhang, C. T. (1998). Prediction and classification of domain structural classes. Proteins: Structure, Function and Genetics, 31, 97-103.

    Article  CAS  Google Scholar 

  • Chou, P. Y. (1980). Amino acid composition of four classes of proteins, in Abstracts of Papers, Part I, Second Chemical Congress of the North American Continent, Las Vegas.

  • Chou, P. Y. (1989). Prediction of protein structural classes from amino acid composition, in Prediction of Protein Structure and the Principles of Protein Conformation (Fasman, G. D., ed.), Plenum Press, New York, pp. 549-586.

    Chapter  Google Scholar 

  • Chou, P. Y., and Fasman, G. D. (1978). Prediction of secondary structure of proteins from amino acid sequence. Advances in Enzymology and Related Subjects in Biochemistry, 47, 45-148.

    CAS  Google Scholar 

  • Dubchak, I., Holbrook, S. R., and Kim, S.-H. (1993). Predicting protein secondary structure content: A tandem neural network approach. Proteins 16, 79-91.

    Article  CAS  PubMed  Google Scholar 

  • Fasman, G. D. (1989). The development of the prediction of protein structure, in Prediction of Protein Structure and the Principles of Protein Conformation (Fasman, G. D., ed.), Plenum Press, New York, pp. 317-358.

    Chapter  Google Scholar 

  • Kabsch, W., and Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577-2637.

    Article  CAS  PubMed  Google Scholar 

  • Klein, P., and Delisi, C. (1986). Prediction of protein structural class from amino acid sequence. Biopolymers, 25, 1659-1672.

    Article  CAS  PubMed  Google Scholar 

  • Krigbaum, W. R., and Knutton, S. P. (1973). Prediction of the amount of secondary structure in a globular protein from its aminoacid composition. Proceedings of the National Academy of Science of the USA, 70, 2809-2813.

    Article  CAS  Google Scholar 

  • Metfessel, B. A., Saurugger, P. N., Connelly, D. P., and Rich, S. T. (1993). Cross-validation of protein structural class prediction using statistical clustering and neural networks. Protein Science, 2, 1171-1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muskal, S. M., and Kim, S.-H. (1992). Predicting protein secondary structure content: A tandem neural network approach. Journal of Molecular Biology, 225, 713-727.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima, H., Nishikawa, K., and Ooi, T. (1986). The folding type of a protein is relevant to the amino acid composition. Journal of Biochemistry, 99, 152-162.

    Article  Google Scholar 

  • Sreerama, N., and Woody, R. W. (1994). Protein secondary structure from circular dichroism spectroscopy. Journal of Molecular Biology, 242, 497-507.

    CAS  PubMed  Google Scholar 

  • Zhang, C. T., and Chou, K. C. (1994). An alternate-subsite-coupled model for predicting HIV protease sites in proteins. Protein Engineering, 7, 65-73.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C. T., Zhang, Z., and He, Z. (1996a). Prediction of the secondary structure content of globular proteins based on structural classes. Journal of Protein Chemistry, 15, 775-786.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C. T., Zhang, Z., and He, Z. (1996b). Prediction of the secondary structure content of globular proteins based on three structural classes. Journal of Protein Chemistry, 17, 261-272.

    Article  CAS  Google Scholar 

  • Zhou, G. P. (1998). An intriguing controversy over protein structural class prediction. Journal of Protein Chemistry, 17, 729-738.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, KC. Using Pair-Coupled Amino Acid Composition to Predict Protein Secondary Structure Content. J Protein Chem 18, 473–480 (1999). https://doi.org/10.1023/A:1020696810938

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020696810938

Navigation