Skip to main content
Log in

Impaired Mechanisms of Leukocyte Adhesion In Vitro by the Calcium Channel Antagonist Mibefradil

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose. Enhanced adhesion to the vascular endothelium and excessive trafficking to extravascular locations can lead to serious tissue injury and destruction. Therefore, interfering with molecular mechanisms of leukocyte adhesion to the vascular endothelium is an important goal to block diseases like chronic inflammations and atherosclerosis.

Methods. We studied the influence of the calcium antagonists mibefradil (T-type channel blocker), amlodipine and verapamil (both L-type channel blockers) on mechanisms related to leukocyte adhesion using isolated peripheral human blood leukocytes.

Results. Mibefradil but not amlodipine and verapamil attenuated leukocyte adhesion in vitro. Regarding the mechanisms we found that mibefradil reduced the surface expression of β2 integrins and L-selectin. The immobilization of the β2 integrin subunit to the cytoskeleton that was inducible by receptor cross linking was impaired. Mibefradil was able to significantly inhibit the formyl-methionyl-leucyl-phenylalanine (fMLP) induced calcium rise, which suggests that mibefradil interfered with integrin signaling through blocking the intracellular calcium rise. SK&F 96365, a blocker of the capacitative calcium entry had no effect on cell adhesion and was less effective to influence integrin mediated mechanisms than mibefradil.

Conclusion. Our data suggest that mibefradil or chemically related substances are promising to serve as potent drugs to prevent excessive adhesion of leukocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Girard JP, Springer TA. High endothelial venules (HEVs): Specialized endothelium for lymphocyte migration. Immunol Today 1995;16:449–457.

    Google Scholar 

  2. Harlan JM. Leukocyte-endothelial interactions. Blood 1985;65:513–525.

    Google Scholar 

  3. Imhof BA, Dunon D. Leukocyte migration and adhesion.Adv Immunol 1995;58:345–416.

    Google Scholar 

  4. Albelda SM, Smith CW, Ward PA. Adhesion molecules and inflammatory injury. Faseb J 1994;8:504–512.

    Google Scholar 

  5. Lefer AM, Weyrich AS, Buerke M. Role of selectins, a new family of adhesion molecules, in ischaemia-reperfusion injury. Cardiovasc Res 1994;28:289–294.

    Google Scholar 

  6. Schachter M. Calcium antagonists and atherosclerosis. Int J Cardiol 1997;62 (Suppl 2):S9–S15.

    Google Scholar 

  7. Dunon D, Piali L, Imhof BA. To stick or not to stick: The new leukocyte homing paradigm. Curr Opin Cell Biol 1996;8:714–723.

    Google Scholar 

  8. Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood 1994;84:2068–2101.

    Google Scholar 

  9. Miller J, Knorr R, Ferrone M, Houdei R, Carron CP, Dustin ML. Intercellular adhesion molecule-1 dimerization and its consequences for adhesion mediated by lymphocyte function associated-1. J Exp Med 1995;182:1231–1241.

    Google Scholar 

  10. Meerschaert J, Furie MB. The adhesion molecules used by monocytes for migration across endothelium include CD11a/CD18, CD11b/CD18, and VLA-4 on monocytes and ICAM-1, VCAM-1, and other ligands on endothelium. J Immunol 1995;154:4099–4112.

    Google Scholar 

  11. Clark EA, Brugge JS. Integrins and signal transduction pathways: The road taken. Science 1995;268:233–239.

    Google Scholar 

  12. Weismann M, Guse AH, Sorokin L, et al. Integrin-mediated intracellular Ca2+signaling in Jurkat T lymphocytes. J Immunol 1997;158:1618–1627.

    Google Scholar 

  13. Diamond MS, Springer TA. The dynamic regulation of integrin adhesiveness. Curr Biol 1994;4:506–517.

    Google Scholar 

  14. Williams MA, Solomkin JS. Integrin-mediated signaling in human neutrophil functioning. J Leukoc Biol 1999;65:725–736.

    Google Scholar 

  15. Lowell CA, Berton G. Integrin signal transduction in myeloid leukocytes. J Leukoc Biol 1999;65:313–320.

    Google Scholar 

  16. Peter K, O'Toole TE. Modulation of cell adhesion by changes in alpha L beta 2 (LFA-1, CD11a/CD18) cytoplasmic domain/ cytoskeleton interaction. J Exp Med 1995;181:315–326.

    Google Scholar 

  17. Pardi R, Inverardi L, Rugarli C, Bender JR. Antigenreceptor complex stimulation triggers protein kinase Cdependent CD11a/CD18-cytoskeleton association in T lymphocytes. J Cell Biol 1992;116:1211–1220.

    Google Scholar 

  18. Evans SS, Schleider DM, Bowman LA, Francis ML, Kansas GS, Black JD. Dynamic association of L-selectin with the lymphocyte cytoskeletal matrix. J Immunol 1999;162:3615–3624.

    Google Scholar 

  19. Nebe B, Bohn W, Pommerenke H, Rychly J. Flow cytometric detection of the association between cell surface receptors and the cytoskeleton. Cytometry 1997;28:66–73.

    Google Scholar 

  20. Nebe B, Bohn W, Sanftleben H, Rychly J. Induction of a physical linkage between integrins and the cytoskeleton depends on intracellular calcium in an epithelial cell line. Exp Cell Res 1996;229:100–110.

    Google Scholar 

  21. Elkayam U. Calcium channel blockers in heart failure. Cardiology 1998;89:38–46.

    Google Scholar 

  22. Nayler WG, ed. Second Generation of Calcium Antagonists. Berlin: Springer-Verlag, 1991.

    Google Scholar 

  23. Martin RL, Lee JH, Cribbs LL, Perez-Reyes E, Hanck DA. Mibefradil block of cloned T-type calcium channels. J Pharmacol Exp Ther 2000;295:302–308.

    Google Scholar 

  24. Kobrin I, Bieska G, Charlon V, Lindberg E, Pordy R. Antianginal and anti-ischemic effects of mibefradil, a new T-type calcium channel antagonist. Cardiology 1998;89:23–32.

    Google Scholar 

  25. Clozel JP, Ertel EA, Ertel SI. Discovery and main pharmacological properties of mibefradil (Ro 40–5967), the first selective T-type calcium channel blocker. J Hypertens Suppl 1997;15:S17–S25.

    Google Scholar 

  26. Leuranguer V, Mangoni ME, Nargeot J, Richard S. Inhibition of T-type and L-type calcium channels by mibefradil: Physiologic and pharmacologic bases of cardiovascular effects. J Cardiovasc Pharmacol 2001;37:649–661.

    Google Scholar 

  27. Noll G, Luscher TF. Comparative pharmacological properties among calcium channel blockers: T-channel versus Lchannel blockade. Cardiology 1998;89:10–15.

    Google Scholar 

  28. Mishra SK, Hermsmeyer K. Selective inhibition of T-type Ca2+channels by Ro 40–5967. Circ Res 1994;75:144–148.

    Google Scholar 

  29. Hoffman S, Gopalakrishna R, Gundimeda U, et al.Verapamil inhibits proliferation, migration and protein kinase C activity in human retinal pigment epithelial cells. Exp Eye Res 1998;67:45–52.

    Google Scholar 

  30. Matsumori A, Ono K, Nishio R, Nose Y, Sasayama S. Amlodipine inhibits the production of cytokines induced by ouabain. Cytokine 2000;12:294–297.

    Google Scholar 

  31. Eberhard M, Miyagawa K, Hermsmeyer K, Erne P. Effects of mibefradil on intracellular Ca2+release in cultured rat cardiac fibroblasts and human platelets. Naunyn Schmiedebergs Arch Pharmacol 1995;353:94–101.

    Google Scholar 

  32. Chouabe C, Drici MD, Romey G, Barhanin J. Effects of calcium channel blockers on cloned cardiac K+channels IKr and IKs. Therapie 2000;55:195–202.

    Google Scholar 

  33. Petrov V, Lijnen P. Inhibition of proliferation of human peripheral blood mononuclear cells by calcium antagonists. Role of interleukin-2. Methods Find Exp Clin Pharmacol 2000;22:19–23.

    Google Scholar 

  34. Nilius B, Prenen J, Kamouchi M, Viana F, Voets T, Droogmans G. Inhibition by mibefradil, a novel calcium channel antagonist, of Ca(2+)-and volume-activated Cl channels in macrovascular endothelial cells. Br J Pharmacol 1997;121:547–555.

    Google Scholar 

  35. Hermsmeyer K, Miyagawa K. Protein kinase C mechanism enhances vascular muscle relaxation by the Ca2+antagonist, Ro 40–5967. J Vasc Res 1996;33:71–77.

    Google Scholar 

  36. Stewart MP, McDowall A, Hogg N. LFA-1-mediated adhesion is regulated by cytoskeletal restraint and by a Ca2+-dependent protease, calpain. J Cell Biol 1998;140:699–707.

    Google Scholar 

  37. Vandenberghe PA, Ceuppens JL. Flow cytometric measurement of cytoplasmic free calcium in human peripheral blood T lymphocytes with fluo-3, a new fluorescent calcium indicator. J Immunol Methods 1990;127:197–205.

    Google Scholar 

  38. Nebe B, Rychly J, Knopp A, Bohn W. Mechanical induction of beta 1-integrin-mediated calcium signaling in a hepatocyte cell line. Exp Cell Res 1995;218:479–484.

    Google Scholar 

  39. Lijnen P, Fagard R, Petrov V. Mibefradil-induced inhibition of proliferation of human peripheral blood mononuclear cells. J Cardiovasc Pharmacol 1999;33:595–604.

    Google Scholar 

  40. Loike JD, Cao L, Budhu S, et al. Differential regulation of beta1 integrins by chemoattractants regulates neutrophil migration through fibrin. J Cell Biol 1999;144:1047–1056.

    Google Scholar 

  41. Zimmerman GA, Prescott SM, McIntyre TM. Endothelial cell interactions with granulocytes: Tethering and signaling molecules. Immunol Today 1992;13:93–100.

    Google Scholar 

  42. Hogg N, Landis RC. Adhesion molecules in cell interactions. Curr Opin Immunol 1993;5:383–390.

    Google Scholar 

  43. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell 1994;76:301–314.

    Google Scholar 

  44. Blaheta RA, Hailer NP, Brude N, et al. Novel mode of action of the calcium antagonist mibefradil (Ro 40–5967): Potent immunosuppression by inhibition of T-cell infiltration through allogeneic endothelium. Immunology 1998;94:213–220.

    Google Scholar 

  45. Lub M, van Kooyk Y, van Vliet SJ, Figdor CG. Dual role of the actin cytoskeleton in regulating cell adhesion mediated by the integrin lymphocyte function-associated molecule-1. Mol Biol Cell 1997;8:341–351.

    Google Scholar 

  46. Sampath R, Gallagher PJ, Pavalko FM. Cytoskeletal interactions with the leukocyte integrin beta2 cytoplasmic tail. Activation-dependent regulation of associations with talin and alpha-actinin. J Biol Chem 1998;273:33588–33594.

    Google Scholar 

  47. Kucik DF, Dustin ML, Miller JM, Brown EJ. Adhesionactivating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes. J Clin Invest 1996;97:2139–2144.

    Google Scholar 

  48. Gimond C, de Melker A, Aumailley M, Sonnenberg A. The cytoplasmic domain of alpha 6 Aintegrin subunit is an in vitro substrate for protein kinase C. Exp Cell Res 1995;216:232–235.

    Google Scholar 

  49. Lewis JM, Cheresh DA, Schwartz MA. Protein kinase C regulates alpha v beta 5-dependent cytoskeletal associations and focal adhesion kinase phosphorylation. J Cell Biol 1996;134:1323–1332.

    Google Scholar 

  50. Lewis RS, Cahalan MD. Potassium and calcium channels in lymphocytes. Annu Rev Immunol 1995;13:623–653.

    Google Scholar 

  51. Lewis RS. Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol 2001;19:497–521.

    Google Scholar 

  52. Hahn M, Tkachuk VA, Bochkov VN, Cheglakov IB, Clozel JP. Blockade of receptor-operated calcium channels by mibefradil (Ro 40–5967): Effects on intracellular calcium and platelet aggregation. Cardiovasc Drugs Ther 1995;9:815–821.

    Google Scholar 

  53. Yue L, Peng JB, Hediger MA, Clapham DE. CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature 2001;410:705–709.

    Google Scholar 

  54. Putney JW Jr, Broad LM, Braun FJ, Lievremont JP, Bird GS. Mechanisms of capacitative calcium entry. J Cell Sci 2001;114:2223–2229.

    Google Scholar 

  55. Nick JA, Avdi NJ, Young SK, et al. Common and distinct intracellular signaling pathways in human neutrophils utilized by platelet activating factor and FMLP. J Clin Invest 1997;99:975–986.

    Google Scholar 

  56. Pellegatta F, Radaelli A, Heltai S, Yan L, Chierchia SL, Folli F. Evidence for the involvement of phosphatidylinositol 3-kinase in fMLP-stimulated neutrophil adhesion to ICAM-]1-transfected cells. J Cardiovasc Pharmacol 2001;37:751–761.

    Google Scholar 

  57. Bilici D, Akpinar E, Gursan N, Dengliz GO, Bilici S, Alta S. Protective effect of t-type calcium channel blocker in histamine-induced paw inflammation in rat. Pharmacol Res 2001;44:527–531.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nebe, B., Holzhausen, C., Rychly, J. et al. Impaired Mechanisms of Leukocyte Adhesion In Vitro by the Calcium Channel Antagonist Mibefradil. Cardiovasc Drugs Ther 16, 183–193 (2002). https://doi.org/10.1023/A:1020688019792

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020688019792

Navigation