Skip to main content
Log in

Triphasic FE Modeling of the Skin Water Barrier

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A skin–air model is developed to model the water barrier function of skin. The skin model is a porous solid saturated with a monovalent salt solution. The air model is a vapor diffusion model in non-moving air. In vivo measurements of water loss from human skin under varying ambient conditions are used to validate the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R., Cassidy, J., Hansen, J. and Yellin, W.: 1973, Hydration of stratum corneum, Biopolym. 12, 2789–2802.

    Google Scholar 

  • de Borst, R., Kusters, G., Nauta, P. and Witte, F. D.: 1985, DIANA - A comprehensive, but flexible finite element system, In: C. Brebbia (ed.), Finite Element Systems: A Handbook, Springer Verlag, Berlin, New York and Tokyo.

    Google Scholar 

  • DIANA: 1996, DIANA Finite Element Analysis: User's Manual, TNO Building and Construction Research, Delft, The Netherlands.

  • El-Shimi, A. and Princen, H.: 1978, Water vapor sorption and desorption behavior of some keratins, Colloid Polym. Sci. 256, 105–114.

    Google Scholar 

  • Fatt, I.: 1968, Dynamics of water transport in the corneal stroma, Exp. Eye Res. 7, 402–412.

    Google Scholar 

  • Guyton, A. and Hall, J.: 1996, Textbook of Medical Physiology,W.B. Saunders Company, New York.

    Google Scholar 

  • Hansen, J. and Yellin, W.: 1972, NMR and infrared spectroscopic studies of stratum corneum hydration, In: H. Jellinek (ed.), Water Structure at the Water-Polymer Interface, Plenum Press, New York.

    Google Scholar 

  • Hilliard Jr., P. and Dorogi, P.: 1989, Investigation of temperature and water activity effects on pig skin in vitro, J. Soc. Cosmet. Chem. 40, 1–20.

    Google Scholar 

  • Holbrook, K. and Odland, G.: 1974, Regional differences in the thickness (cell layers of the human stratum corneum: an ultrastructural analysis, J. Invest. Dermatol. 62, 415–422.

    Google Scholar 

  • Huyghe, J. and Janssen, J.: 1997, Quadriphasic mechanics of swelling incompressible porous media, Int. J. Eng. Sci. 35, 793–802.

    Google Scholar 

  • Kemenade, P.: 1998, Water and ion transport through the skin, PhD Thesis, Eindhoven University of Technology, The Netherlands.

  • Lai, W., Hou, J. and Mow, V.: 1991, A triphasic theory for the swelling and deformation behaviors of articular cartilage, J. Biomech. Eng. 113, 245–258.

    Google Scholar 

  • Langer, A.: 1861, Zur Anatomie und Physiologie der Haut. 1. Uber die Spaltbarkeit der Cutis, S.B. Akad. Wien 44, 19–46.

    Google Scholar 

  • Mackie, J. and Meares, P.: 1955, Diffusion of electrolytes in cation exchange resin, Proc. Res. Soc. London Der. A 232, 498.

    Google Scholar 

  • Maroudas, A.: 1975, Biophysical chemistry of cartilaginous tissues with special reference to solute and fluid transport, Biorheol. 12, 232–248.

    Google Scholar 

  • Marshall, T.: 1988, Soil Physics, 2nd edn., Cambridge University Press.

  • Nachemson, A.: 1981, Disc pressure measurements, Spine 6, 93–97.

    Google Scholar 

  • Nitao, J. and Bear, J.: 1996, Potentials and their role in transport in porous media, Water Resour. Res. 32(2), 225–250.

    Google Scholar 

  • Oomens, C.: 1985, A mixture approach to the mechanics of skin and subcutis, PhD Thesis, University of Twente.

  • Oomens, C., Campen, D. V. and Grootenboer, H.: 1987, A mixture approach to the mechanics of skin, J. Biomech. 20(9), 877–885.

    Google Scholar 

  • Oomens, C., de Heus, H., Huyghe, J., Nelissen, L. and Janssen, J.: 1995, Validation of the triphasic mixture theory for a mimic of intervertebral disc tissue, Biomimetics 3, 171–185.

    Google Scholar 

  • Park, A. and Baddiel, C.: 1972, Rheology of stratum corneum-I: a molecular interpretation of the stress-strain curve, J. Soc. Cosmet. Chem. 23, 3–12.

    Google Scholar 

  • Pikal, M. and Shah, S.: 1990, Transport mechanisms in iontophoresis. III. An experimental study of the contributions of electro-osmotic flow and permeability change in transport of solutes, Pharm. Res. 7(3), 222–229.

    Google Scholar 

  • Snijders, H., Huyghe, J. and Janssen, J.: 1995, Triphasic finite element model for swelling porous media, Int. J. Num. Meth. Fluids 20, 1039–1046.

    Google Scholar 

  • Snijders, J.: 1994, The triphasic mechanics of the intervertebral disc - a theoretical, numerical and experimental analysis, PhD Thesis, University of Limburg, Maastricht, The Netherlands.

  • Spencer, T., Linamen, C., Akers, W. and Jones, H.: 1975, Temperature dependence of water content of stratum corneum, Br. J. Dermatol. 93, 159–164.

    Google Scholar 

  • Swabb, E., Wei, J. and Gullino, P.: 1974, Diffusion and convection in normal and neoplastic tissues, Cancer Res. 34, 2814–2822.

    Google Scholar 

  • Warner, R., Meyers, M. and Taylor, D.: 1988, Electron probe analysis of human skin: determination of the water concentration profile, J. Invest. Dermatol. 90, 218–224.

    Google Scholar 

  • Whitton, J. and Everall, J.: 1973, The thickness of the epidermis, Br. J. Dermatol. 89, 467–476.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Kemenade, P.M., Huyghe, J.M. & Douven, L.F.A. Triphasic FE Modeling of the Skin Water Barrier. Transport in Porous Media 50, 93–109 (2003). https://doi.org/10.1023/A:1020680811437

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020680811437

Navigation