Skip to main content
Log in

Identification of mass fractal in chemically synthesized ZnS quantum dots

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zinc sulphide quantum dots chemically capped with thioglycerol having two different sizes have been synthesized. The particles have a disordered sphalerite structure and are slightly contracted by 1% against the bulk. Small angle X-ray scattering investigations reveal that powders of these nanocrystallites are mass fractals that aggregate via a reaction-limited process to form irregular but rather dense networks with a fractal dimensionality of D f = 2.7 and 2.1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. BRUS, J. Chem. Phys. 80 (1984) 4403.

    Google Scholar 

  2. A. P. ALIVISATOS, ibid. 100 (1996) 13226.

    Google Scholar 

  3. H. WELLER, Adv. Mat. 5 (1993) 88.

    Google Scholar 

  4. S. V. GAPONENKO, “Optical Properties of Semiconductor Nanocrystals” (Cambridge Univ. Press, Cambridge, UK, 1998).

    Google Scholar 

  5. T. ANDO, Y. ARAKAWA, K. FURUYA, S. KOMIYAMA and H. NAKASHIMA (eds.), “Mesoscopic Physics and Electronics” (Springer, Berlin, 1998).

    Google Scholar 

  6. W. VOGEL, J. URBAN, M. KUNDU and S. K. KULKARNI, Langmuir 13 (1997) 827.

    Google Scholar 

  7. H. GLEITER, Prog. Mater. Sci. 33 (1989) 223.

    Google Scholar 

  8. C. B. MURRAY, C. R. KAGAN and M. G. BAWENDI, Ann. Rev. Mat. Sci. 30 (2000) 545.

    Google Scholar 

  9. Idem., Science 270 (1995) 1335.

    Google Scholar 

  10. L. SPANHEL and M. A. ANDERSON, J. Am. Chem. Soc. 112 (1990) 2279.

    Google Scholar 

  11. B. A. KORGEL and D. FITZMAURICE, Phys. Rev. B 59 (1999) 14191.

    Google Scholar 

  12. C. R. KAGAN, C. B. MURRAY and M. G. BAWENDI, ibid. 54 (1996) 8633.

    Google Scholar 

  13. V. PTATSCHEK, T. SCMIDT, M. LERCH, G. MULLER, L. SPANHEL, A. EMMERLING, J. FRICKE, A. H. FOITZIK and D. LANGER, Ber. Bunsenges. Phys. Chem. 102 (1998) 85.

    Google Scholar 

  14. S. MAZUMDAR, D. SEN, P. U. M. SASTRY, R. CHITRA, A. SEQUEIRA and K. S. CHANDRASEKARAN, Phys. Condens. Matter. 10 (1998) 9969.

    Google Scholar 

  15. A. B. JARZEBSKI, J. LORENC and L. PAJAK, Langmuir 13 (1997) 1280.

    Google Scholar 

  16. V. BOCK, A. EMMERLING, R. SALIGER and J. FRICKE, J. Porous Mat. 4 (1997) 287.

    Google Scholar 

  17. I. KRAKOVSKY, H. URAKAWA, K. KANJIWARA and S. KOHJIYA, J. Non Cryst. Sol. 31 (1997) 231.

    Google Scholar 

  18. P. W. SCHMIDT and R. HIGHT, Jr. Acta Cryst. 13 (1960) 480.

    Google Scholar 

  19. S. M. SZE, “Physics of Semiconductor Devices” (Wiley East. Ltd., 1981).

  20. W. VOGEL, Cryst. Res. Tech. 33 (1998) 1141.

    Google Scholar 

  21. V. GNUTZMANN and W. VOGEL, J. Phys. Chem. 94 (1990) 499.

    Google Scholar 

  22. W. VOGEL, B. ROSNER and B. TESCHE, ibid. 97 (1993) 11611.

    Google Scholar 

  23. N. HARTMANN, R. IMBIEHL and W. VOGEL, Catal. Lett. 28 (1994) 373.

    Google Scholar 

  24. W. VOGEL, P. H. BORSE, N. DESHMUKH and S. K. KULKARNI, Langmuir 16 (2000) 2032.

    Google Scholar 

  25. W. VOGEL, J. BRADLEY, O. VOLLMER and I. ABRAHAM, J. Phys. Chem. B 102 (1998) 10853.

    Google Scholar 

  26. R. HOSEMANN and S. N. BAGCHI, “Direct Analysis of Diffraction by Matter” (North-Holland, Amsterdam, 1962) p. 587.

    Google Scholar 

  27. A. GUINIER, Ann. Phys. 12 (1939) 161.

    Google Scholar 

  28. P. W. SCHMIDT in “The Fractal Approach to Heterogeneous Chemistry, ” edited by D. Avnir (John Wiley, New York 1989) p. 67.

    Google Scholar 

  29. J. E. MARTIN and A. J. HURD, J. Appl. Cryst. 20 (1987) 61.

    Google Scholar 

  30. G. POROD, Kolloid-Z 124 (1951) 83; Idem., ibid. 125 (1952) 51; Idem., ibid. 125 (1952) 108.

    Google Scholar 

  31. W. RULAND, J. Appl. Cryst. 4 (1971) 70.

    Google Scholar 

  32. H. D. BALE and P. W. SCHMIDT, Phys. Rev. Lett. 53 (1984) 596.

    Google Scholar 

  33. D. W. SCHAEFER, J. E. MARTIN, P. WILTZIUS and D. S. CANNELL ibid. 52 (1984) 2371.

    Google Scholar 

  34. D. W. SCHAEFER and K. D. KEEFER, ibid. 56 (1984) 2199.

    Google Scholar 

  35. T. A. WITTEN and L. M. SANDER, ibid. 47 (1981) 1400; Idem. B 27 (1982) 5686.

    Google Scholar 

  36. P. MEAKIN, Phys. Rev. A 27 (1983) 1495.

    Google Scholar 

  37. W. D. BROWN and R. C. BALL, J. Phys. A 18 (1985) L517.

    Google Scholar 

  38. M. Y. LIN, H. M. LINDSAY, D. A. WEITZ, R. C. BALL, R. KLEIN and P. MEAKIN, Nature 339 (1990) 360.

    Google Scholar 

  39. T. P. M. BEELEN, W. H. DOKTER, H. F. VAN GARDEREN and R. A. VAN SANTEN, Adv. Colloid Interface Sci. 50 (1994) 23.

    Google Scholar 

  40. P. MEAKIN and R. JULLIEN, J. Phys. (Paris) 46 (1985) 1543.

    Google Scholar 

  41. B. B. MANDELBROT, “The Fractal Geometry of Nature”(W.H. Freeman, New York, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, W., Dhayagude, D., Chitra, R. et al. Identification of mass fractal in chemically synthesized ZnS quantum dots. Journal of Materials Science 37, 4545–4553 (2002). https://doi.org/10.1023/A:1020675710868

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020675710868

Keywords

Navigation