Skip to main content
Log in

Usual and Unusual Methods for Detection of Lipid Peroxides as Indicators of Tissue Injury in Cerebral Ischemia: What Is Appropriate and Useful?

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. Free radical-dependent lipid peroxidation processes have long been thought to contribute to brain damage following stroke or cerebral ischemia/reperfusion.

2. The preponderance of evidence for this belief has been derived indirectly, through diminution of tissue injury indices (e.g., brain infarct volume) facilitated by application of free radical scavenger substances.

3. Direct, unequivocal evidence for lipid peroxidation in terms of classical assays (detection of conjugated diene absorbance or thiobarbituric acid-reactive substances) is considerably less common, and its validity can be questioned.

4. Correlations of treatment-induced diminishment of brain injury indices with reductions in lipid peroxidation level are rarer still.

5. Reasons underlying the disparity between the belief that lipid peroxidation contributes to ischemic brain injury and direct evidence for this contribution (at least acutely) are proposed, along with evidence that new methods are being developed which should provide the basis for obtaining a definitive answer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Asakawa, T., and Matsushita, S. (1979). Thiobarbituric acid test for detecting lipid peroxides. Lipids 14:401–406.

    Google Scholar 

  • Asakawa, T., and Matsushita, S. (1980). Coloring conditions of thiobarbituric acid test for detecting lipid peroxides. Lipids 15:137–140.

    Google Scholar 

  • Babbs, C. F. (1994). Histochemical methods for localization of endothelial superoxide and hydrogen peroxide generation in perfused organs. In Packer, L. (ed.), Methods in Enzymology: Oxygen Radicals in Biological Systems, CRC Press, Boca Raton, FL, Vol. 233, Part C, pp. 619–630.

    Google Scholar 

  • Bligh, E. G., and Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biophys. Biochem. 32:911–917.

    Google Scholar 

  • Braughler, J. M., and Hall, E. D. (1989). Central nervous system trauma and stroke. 1. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Radical Biol. Med. 6:289–301.

    Google Scholar 

  • Braughler, J. M., and Hall, E. D. (1992). Involvement of lipid peroxidation in CNS injury. J. Neurotrauma 9:S1–S7.

    Google Scholar 

  • Bromont, C., Marie, C., and Bralet, J. (1989). Increased lipid peroxidation in vulnerable brain regions after transient forebrain ischemia in rats. Stroke 20:918–924.

    Google Scholar 

  • Bulkley, G. B. (1987). Free radical-mediated reperfusion injury: A selective review. Br. J. Cancer 55(Suppl. VIII):66–69.

    Google Scholar 

  • Cao, X., and Phillis, J. W. (1994). Alpha-phenyl-tert-butyl-nitrone reduces cortical infarct and edema in rats subjected to focal ischemia. Brain Res. 644:267–272.

    Google Scholar 

  • Carney, J. M., Landrum, W., Mayes, L., Zou, Y., and Lodder, R. A. (1993). Near-infrared spectrophotometric monitoring of stroke-related changes in the protein and lipid composition of whole gerbil brain. Anal. Chem. 65:1305–1313.

    Google Scholar 

  • Clemens, J. A., and Panetta, J. A. (1994). Neuroprotection by antioxidants in models of global and focal ischemia. Ann. N.Y. Acad. Sci. 738:250–256.

    Google Scholar 

  • Cochrane, C. G. (1991). Cellular injury by oxidants. Am. J. Med. 91(suppl. 3C):23S–28S.

    Google Scholar 

  • Cooper, A. J. L., Pulsinelli, W. A., and Duffy, T. E. (1980). Glutathione and ascorbate during ischemia and postischemic reperfusion in rat brain. J. Neurochem. 35:1242–1245.

    Google Scholar 

  • Corongiu, F., and Banni, S. (1994). Detection of conjugated dienes by second derivative ultraviolet spectrophotometry. In Packer, L. (ed.), Methods in Enzymology: Oxygen Radicals in Biological Systems, CRC Press, Boca Raton, FL, Vol. 233, Part C, pp. 303–310.

    Google Scholar 

  • Dahle, L. K., Hill, E. G., and Holman, R. T. (1962). The thiobarbituric acid reaction and the autoxidations of polyunsaturated fatty acid methyl esters. Arch. Biochem. Biophys. 98:253–261.

    Google Scholar 

  • Demopoulos, H. D., Flamm, E. S., Pietronigro, D. D., and Seligman, M. L. (1980). The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol. Scand. Suppl. 492:91–119.

    Google Scholar 

  • Esterbauer, H., Schaur, R. J., and Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biol. Med. 11:81–128.

    Google Scholar 

  • Fiskum, G., Liu, Y., and Rosenthal, R. E. (1995). Brain lipid oxidation following cardiac arrest and resuscitation. Soc. Neurosci. Abstr. 21 (Part 2):1000.

    Google Scholar 

  • Floyd, R. A. (1990). Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J. 4:2587–2597.

    Google Scholar 

  • Ginsberg, M. D., Watson, B. D., Busto, R., Nakayama, H., Prado, R., Dietrich, W. D., and Globus, M.Y.-T. (1988). Peroxidative damage to cell membranes following cerebral ischemia—A cause of ischemic brain injury? Neurochem. Pathol. 9:171–193.

    Google Scholar 

  • Goldberg, W. J., Watson, B. D., Busto, R., Kurchner, H., Santiso, M., and Ginsberg M. D. (1984). Concurrent measurements of (Na+,K+)-ATPase activity and lipid peroxides during reversible global ischemia in rat brain. Neurochem. Res. 9:1737–1747.

    Google Scholar 

  • Haba, K., Ogawa, N., Mizukawa, K., and Mori, A. (1991). Time course of changes in lipid peroxidation, pre-and postsynaptic cholinergic indices, NMDA receptor binding and neuronal death in the gerbil hippocampus following transient ischemia. Brain Res. 540:116–122.

    Google Scholar 

  • Hall, E. D., and Braughler, J. M. (1989). Central nervous system trauma and stroke. II. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation. Free Radical Biol. Med. 6:303–313.

    Google Scholar 

  • Hall, E. D., Oostveen, J. A., Andrus, P. K., Anderson, D. K., and Thomas, C. E. (1997). Immunocytochemical method for investigating in vivo neuronal oxygen radical-induced lipid peroxidation. J. Neurosci. Meth. 76:115–122.

    Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C. (1985). Free Radicals in Biology and Medicine, Clarendon Press, Oxford.

    Google Scholar 

  • Halliwell, B., and Chirico, S. (1993). Lipid peroxidation: Its mechanism, and significance. Am. J. Clin. Nutr. 57:715S–725S.

    Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C. (1986). Oxygen free radicals and iron in relation to biology and medicine: Some problems and concepts. Arch. Biochem. Biophys. 246:501–514.

    Google Scholar 

  • Hara, A., and Radin, N. S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 90:420–426.

    Google Scholar 

  • Hara, H., Kogure, K., Kato, H., Ozaki, A., and Sukamoto, T. (1991). Amelioration of brain damage after focal ischemia in the rat by a novel inhibitor of lipid peroxidation. Eur. J. Pharmacol. 197:75–82.

    Google Scholar 

  • Holman, R. T., and Burr, G. O. (1946). Spectrophotometric studies of the oxidation of fats. VI. Oxygen absorption and chromophore production in fatty esters. J. Am. Chem. Soc. 68:562–566.

    Google Scholar 

  • Ito, H., Toru, M., and Suzuki, T. (1993). A comparative study on lipid peroxidation in cerebral cortex of stroke-prone spontaneously hypertensive rats. Int. J. Biochem. 25:1801–1805.

    Google Scholar 

  • Klein, R. A. (1970). The detection of oxidation in liposome preparations. Biochim. Biophys. Acta 210:486–489.

    Google Scholar 

  • Kogure, K., Watson, B. D., Busto, R., and Abe K. (1982). Potentiation of lipid peroxides in rat brain by ischemia. Neurochem. Res. 7:437–454.

    Google Scholar 

  • Kontos, H. A. (1989). Oxygen radicals in CNS damage. Chem.-Biol. Interact. 72:229–255.

    Google Scholar 

  • MacMillan, V. (1982). Cerebral Na+,K+-ATPase activity during exposure to and recovery from acute ischemia. J. Cereb. Blood Flow Metab. 2:457–465.

    Google Scholar 

  • Montine, K. S., Kim, P. J., Olson, S. J., Markesbery, W. R., and Montine, T. J. (1997). 4-Hydroxynonenal pyrrole adducts in human degenerative diseases. J. Neuropathol. Exp. Neurol. 56:866–871.

    Google Scholar 

  • Nakayama, H., Dietrich, W. D., Watson, B. D., Busto, R., and Ginsberg, M. D. (1988). Photothrombotic occlusion of rat middle cerebral artery: Histopathological and hemodynamic sequelae of acute recanalization. J. Cerebr. Blood Flow Metab. 8:357–366.

    Google Scholar 

  • Paradis, V., Kollinger, M., Fabre, M., Holstege, A., Poynard, T., and Bedossa, P. (1997). In situ detection of lipid peroxidation by-products in chronic liver diseases. Hepatology 26:135–142.

    Google Scholar 

  • Pullarkat, R. K., and Reha, H. (1976). Fatty-acid composition of rat brain lipids determined by support-coated open-tubular gas chromatography. J. Chromatogr. Sci. 14:25–28.

    Google Scholar 

  • Pulsinelli, W. A., and Brierley, J. B. (1979). A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267–272.

    Google Scholar 

  • Rafols, J. A., Daya, A. M., O'Neil, B. J., Krause, G. S., Neumar, R. W., and White, B. C. (1995). Global brain ischemia and reperfusion: Golgi apparatus ultrastructure in neurons selectively vulnerable to death. Acta Neuropathol. 90:17–30.

    Google Scholar 

  • Rehncrona, S., Folbergrova, J., Smith, D., and Siesjo, B. K. (1980). Influence of complete and pronounced incomplete cerebral ischemia and subsequent recirculation on cortical concentrations of oxidized and reduced glutathione in the rat. J. Neurochem. 34:477–486.

    Google Scholar 

  • Rosenthal, R. E., Chanderbhan, R., Marshall, G., and Fiskum, G. (1992). Prevention of postischemic brain lipid conjugated diene production and neurological injury by hydroxyethyl starch-conjugated deferoxamine. Free Radical Biol. Med. 12:29–33.

    Google Scholar 

  • Ruef, J., Zhao, Y. H., Yin, L.-Y., Wu, Y., Hanson, S. R., Kelly, A. B., Harker, L. A., Rao, G. N., Runge, M. S., and Patterson, C. (1997). Induction of vascular endothelial growth factor in balloon-injured baboon arteries. A novel role for reactive oxygen species in atherosclerosis. Circ. Res. 81:24–33.

    Google Scholar 

  • Sakamoto, A., Ohnishi, S. T., Ohnishi, T., and Ogawa, R. (1991a). Relationship between free radical production and lipid peroxidation during ischemia-reperfusion injury in the rat brain. Brain Res. 554:186–192.

    Google Scholar 

  • Sakamoto, A., Ohnishi, S. T., Ohnishi, T., and Ogawa, R. (1991b). Protective effect of a new antioxidant on the rat brain exposed to ischemia-reperfusion injury: Inhibition of free radical formation and lipid peroxidation. Free Radical Biol. Med. 11:385–391.

    Google Scholar 

  • Sharpe, P. C., Mulholland, C., and Trinick, T. (1994). Ascorbate and malondialdehyde in stroke patients. Irish J. Med. Sci. 163:488–491.

    Google Scholar 

  • Siesjo, B. K. (1981). Cell damage in the brain: a speculative synthesis. J. Cereb. Blood Flow Metab. 1:155–185.

    Google Scholar 

  • Springer, J. E., Azbill, R. D., Mark, R. J., Begley, J. G., Waeg, G., and Mattson, M. (1997). 4-Hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake. J. Neurochem. 68:2469–2476.

    Google Scholar 

  • Tappel, A. L. (1973). Lipid peroxidation damage to cell components. Fed. Proc. 32:1870–1874.

    Google Scholar 

  • Traystman, R. J., Kirsch, J. R., and Koehler, R. C. (1991). Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J. Appl. Physiol. 71:1185–1191.

    Google Scholar 

  • Uchida, K., Szweda, L., Chae, H.-Z., and Stadtman, E. R. (1993). Immunochemical detection of 4-hydroxynonenal protein adducts in oxidized hepatocytes. Proc. Natl. Acad. Sci. USA 90:8742–8746.

    Google Scholar 

  • Umemura, K., Wada, K., Uematsu, T., Mizuno, A., and Nakashima, M. (1994). Effect of 21-aminosteroid lipid peroxidation inhibitor, U74006F, in the rat middle cerebral artery occlusion model. Eur. J. Pharmacol. 251:69–74.

    Google Scholar 

  • Vanella, A., Sorrenti, V., Castorina, C., Campisi, A., DiGiacomo, C., Russo, A., and Perez-Polo, J. R. (1992). Lipid peroxidation in rat cerebral cortex during post-ischemic reperfusion: effect of exogenous antioxidants and Ca++-antagonist drugs. Int. J. Dev. Neurosci. 10:75–80.

    Google Scholar 

  • Watson, B. D. (1993). Evaluation of the concomitance of lipid peroxidation in experimental models of cerebral ischemia and stroke. Progr. Brain Res. 96:69–95.

    Google Scholar 

  • Watson, B. D., and Busto, R. (1989). Ultrasensitive autofluorescence detection of conjugated diene and triene structures during brain ischemia and reperfusion. J. Cerebr. Blood Flow Metab. 9:S268.

    Google Scholar 

  • Watson, B. D., Busto, R., Goldberg, W. J., Santiso, M., Yoshida S., and Ginsberg, M. D. (1984). Lipid peroxidation in vivo induced by reversible global ischemia in rat brain. J. Neurochem. 42:268–274.

    Google Scholar 

  • Watson, B. D., Prado, R., Nakayama, H., Busto, R., Santiso, M., and Ginsberg, M. D. (1987). Does early reperfusion of MCA territory destined for infarction following thrombotic stroke in rats induce global lipid peroxidation? J. Cereb. Blood Flow Metab. 7:S11.

    Google Scholar 

  • Watson, B. D., Ginsberg, M. D., and Busto, R. (1996). Macroscopic indices of lipid peroxidation in cerebral ischemia/reperfusion: Validity and sensitivity enhancement in terms of conjugated diene detection. Neurochem. Int. 29:173–286.

    Google Scholar 

  • Watson, B. D., Prado, R., Alonso, O., and Dietrich, W. D. (1997). Fluid-percussion brain trauma in rats acutely generates lipid peroxides observed subcellularly via the TBA reaction in situ. J. Cerebr. Blood Flow Metab. 17(suppl 1):S26.

    Google Scholar 

  • White, B. C., Nayini, N. R., Krause, G. S., Aust, S. D., March, G. G., Bicknell, J. S., and Goosman, M. (1988). Effect on biochemical markers of brain injury of therapy with deferoxamine or superoxide dismutase following cardiac arrest. Am. J. Emerg. Med. 6:569–576.

    Google Scholar 

  • White, B. C., Daya, A., DeGracia, D. J., O'Neil, B. J., Skaerlund, J. M., Trumble, S., Krause, G. S., and Rafols, J. A. (1993). Fluorescent histochemical location of lipid peroxidation during brain reperfusion following cardiac arrest. Acta Neuropathol. 86:1–9.

    Google Scholar 

  • Xue, D., Slivka, A., and Buchan, A. M. (1992). Tirilizad reduces cortical infarction after transient but not permanent focal cerebral ischemia in rats. Stroke 23:894–899.

    Google Scholar 

  • Yagi, K. (1976). A simple fluorometric assay for lipoperoxide in blood plasma. Biochem. Med. 15:212–216.

    Google Scholar 

  • Yang, G., Chan, P. H., Chen, J., Carlson, E., Chen, S. F., Weinstein, P., Epstein, C. J., and Kamii, H. (1994). Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25:165–170.

    Google Scholar 

  • Yoshida, S., Busto, R., Watson, B. D., Santiso, M., and Ginsberg, M. D. (1985). Postischemic cerebral lipid peroxidation in vitro: Modification by dietary vitamin E. J. Neurochem. 44:1593–1601.

    Google Scholar 

  • Yue, T. L., Lysko, P. G., Barone, F. C., Gu, J. L., Ruffolo, R., Jr., and Feuerstein, G. Z. (1994). Carvedilol, a new antihypertensive drug with unique antioxidant activity: Potential role in cerebroprotection. Ann. N.Y. Acad. Sci. 738:231–243.

    Google Scholar 

  • Zhang, J.-R., and Hall, E. D. (1994). Increase in lipid hydroperoxide levels in gerbil brain ischemia/reperfusion measured by hplc chemiluminescence assay. Soc. Neurosci. Abstr. 20 (Part 1):611.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, B.D. Usual and Unusual Methods for Detection of Lipid Peroxides as Indicators of Tissue Injury in Cerebral Ischemia: What Is Appropriate and Useful?. Cell Mol Neurobiol 18, 581–598 (1998). https://doi.org/10.1023/A:1020673600460

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020673600460

Navigation