Skip to main content
Log in

Calculation of Cluster Structure of Melts, Its Effect on Formation of Nanoamorphous Solid Phases and Their Structural Relaxation in Subsequent Heating

  • Published:
Metal Science and Heat Treatment Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. M. Kh. Shorshorov, Ultradisperse Structural State of Metallic Alloys[in Russian], Nauka, Moscow (2001).

    Google Scholar 

  2. M. Kh. Shorshorov and A. I. Manokhin, The Theory of Nonequilibrium Crystallization of Flat Ingot[in Russian], Nauka, Moscow (1992).

    Google Scholar 

  3. T. L. Hill, Thermodynamics of Small Systems, Benjamin Inc., New York, Part 1 (1963), Part 2 (1964).

    Google Scholar 

  4. B. A. Baum, Metallic Liquids: Problems and Hypotheses[in Russian], Nauka, Moscow (1979).

    Google Scholar 

  5. G. Carslow and D. Eger, Thermal Conductivity of Solids[Russian translation], Nauka, Moscow (1964).

    Google Scholar 

  6. A. N. Kolmogorov, “To the statistical theory of crystallization of metals,” Izv. Akad. Nauk SSSR, Ser. Matem., No. 3, 355 - 358 (1937).

    Google Scholar 

  7. A. I. Manokhin, etc., Amorphous Alloys[in Russian], Metallurgiya, Moscow (1984).

    Google Scholar 

  8. H. A. Davies and B. G. Lewis, “A generallised kinetics approach to metallic glass formation,” Scr. Met., 9(10), 1107 - 1112 (1975).

    Article  Google Scholar 

  9. A. M. Glezer, B. V. Molotilov, and O. L. Utevskaya, “Mechanical properties and mechanisms of plastic deformation of amorphous metals,” in: Amorphous Metallic Alloys[in Russian], Metallurgiya, Moscow (1983), pp. 90 - 96.

    Google Scholar 

  10. S. I. Bulychev, V. P. Alekhin, V. Yu. Vasil'ev, et al., “A study of physicochemical properties of metallic glasses by the method of continuous indentation,” Fiz. Khim. Obrab. Mat., 110 - 114 (1981).

  11. M. Kh. Shorshorov, Physical Metallurgy of Welding of Steels amd Titanium Alloys[in Russian], Nauka, Moscow (1965).

    Google Scholar 

  12. D. Mac Lin, Grain Boundaries in Metals[Russian translation], Metallurgizdat, Moscow (1960).

    Google Scholar 

  13. F. N. Tavadze, V. Sh. Bairamoshvili, et al., “Effect of boron on the internal friction of pure iron,” in: Internal Friction in Metals and Alloys[in Russian], Nauka, Moscow (1966), pp. 37 - 39.

    Google Scholar 

  14. Yu. V. Gridina, E. É. Glikman, and Yu. V. Piguzov, “Effect of phosphorus on the internal friction of iron,” Ibid., pp. 91 - 94.

    Google Scholar 

  15. A. S. Tikhonov and M. Kh. Shorshorov, “Superplasticity of metals and alloys,” in: Physical Materials Science in the USSR[in Russian], Naukova Dumka, Kiev (1986), pp. 240 - 251.

    Google Scholar 

  16. V. A. Khonik and V. A. Zelenskii, “Effect of the heating rate on high-temperature plastic properties of glasses based on Fe - Ni and Co,” Fiz. Met. Metalloved., 61, Issue 3, 602 - 604 (1986).

    Google Scholar 

  17. V. A. Khonik and V. A. Zelenskii, “High-temperature plasticity and superplasticity of metallic glasses,” Fiz. Met. Metalloved., 67, Issue 1, 192 - 197 (1989).

    Google Scholar 

  18. V. A. Khonik and V. A. Zelenskii, “Superplasticity of metallic glasses of the Ti - Ni - Cu system,” Fiz. Khim. Obrab. Mat., No. 2, 119 - 121 (1986).

    Google Scholar 

  19. A. E. Gvozdev, Production of Preforms for High-Speed Tools under the Conditions of Superplasticity[in Russian], Mashinostroenie, Moscow (1992).

    Google Scholar 

  20. É. S. Makarov and A. E. Gvozdev, The Theory of Plasticity of Dilatant Media[in Russian], TulGU, Tula (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shorshorov, M.K., Gvozdev, A.E., Afanaskin, A.V. et al. Calculation of Cluster Structure of Melts, Its Effect on Formation of Nanoamorphous Solid Phases and Their Structural Relaxation in Subsequent Heating. Metal Science and Heat Treatment 44, 232–236 (2002). https://doi.org/10.1023/A:1020671003704

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020671003704

Keywords

Navigation