Molecular and Cellular Biochemistry

, Volume 240, Issue 1–2, pp 1–8 | Cite as

The physiological scavenger receptor function of hepatic sinusoidal endothelial and Kupffer cells is independent of scavenger receptor class A type I and II

  • Berit Hansen
  • Beatriz Arteta
  • Bård Smedsrød


This study was undertaken to determine the role of scavenger receptor class A type I and II (SR-AI/II) in the physiological scavenger function of hepatic sinusoidal endothelial cells (SEC) and Kupffer cells (KC). Following intravenous administration of radiolabelled SR-ligands, [advanced glycation end (AGE)-products, N-terminal propeptide of type III procollagen (PIIINP) and formaldehyde treated serum albumin (FSA)] in SR-AI/II-deficient and wild-type mice, radioactivity was removed equally rapidly from the circulation of both types of mice. The major site of uptake was the liver. Separation of liver cells showed that the population of SEC and KC were responsible for ∼55 and ∼25% of the uptake. There was no difference in plasma clearance, organ distribution or cell distribution in SR-AI/II-deficient and wild-type mice. Experiments performed to determine the specificity of endocytosis in cultured SEC showed that uptake of radiolabelled SR-ligands (AGE-protein, PIIINP or FSA) was inhibited equally well by unlabelled FSA and AGE-protein in SEC from receptor deficient and wild-type mice. We conclude from these findings that SR-AI/II is of minor importance in the plasma clearance of physiological as well as foreign SR-ligands.

hepatic sinusoidal endothelial cells advanced glycation end products N-terminal propeptide of type III procollagen receptor mediated endocytosis plasma clearance scavenger receptor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smedsrød B, Pertoft H, Gustafson S, Laurent TC: Scavenger function of the liver endothelial cell. Biochem J 266: 313-327, 1990Google Scholar
  2. 2.
    Smedsrød B, Melkko J, Risteli L, Risteli J: Circulating C-terminal propeptide of type I procollagen is cleared mainly via the mannose receptor in liver endothelial cells. Biochem J 271: 345-350, 1990Google Scholar
  3. 3.
    Smedsrød B, Einarsson M: Clearance of tissue plasminogen activator by mannose and galactose receptors in the liver. Thromb Haemostasis 63: 60-66, 1990Google Scholar
  4. 4.
    Smedsrød B, Tollersrud O: Sinusoidal liver endothelial cells recruit lysosomal enzymes from the circulation by mannose-receptor mediated endocytosis. Cells Hepat Sinus 5: 180-183, 1995Google Scholar
  5. 5.
    Smedsrød B, Pertoft H, Eriksson S, Fraser J, Laurent T: Studies in vitro on the uptake and degradation of sodium hyaluronate in rat liver endothelial cells. Biochem J 223: 617-626, 1984Google Scholar
  6. 6.
    Smedsrød B, Kjellen L, Pertoft H: Endocytosis and degradation of chondroitin sulphate by liver endothelial cells. Biochem J 229: 63-71, 1985Google Scholar
  7. 7.
    Smedsrød B, Johansson S, Pertoft H: Studies in vivo and in vitro on the uptake and degradation of soluble collagen α1(I) chains in rat liver endothelial cells and Kupffer cells. Biochem J 228: 415-424, 1985Google Scholar
  8. 8.
    Løvdal T, Andersen E, Brech A, Berg T: Fc receptor mediated endocytosis of small soluble immunoglobulin G immune complexes in Kupffer and endothelial cells from rat liver. J Cell Sci 113: 3255-3266, 2000Google Scholar
  9. 9.
    Melkko J, Hellevik T, Risteli L, Risteli J, Smedsrød B: Clearance of NH2-terminal propeptides of type I and III procollagen is a physiological function of the scavenger receptor in liver endothelial cells. J Exp Med 179: 405-412, 1994Google Scholar
  10. 10.
    Smedsrød B, Melkko J, Mayer U, Johansson S: Nidogen is a physiological ligand for the scavenger receptor in liver endothelial cells. Atherosclerosis 134: 362, 1997Google Scholar
  11. 11.
    Nagelkerke F, Havekes L, van Hinsbergh VWM, van Berkel TJC: In vivo and in vitro catabolism of native and biologically modified LDL. FEBS Lett 171: 149-153, 1984Google Scholar
  12. 12.
    Smedsrød B, Melkko J, Araki N, Sano H, Horiuchi S: Advanced glycation end products are eliminated by scavenger-receptor-mediated endocytosis in hepatic sinusoidal Kupffer and endothelial cells. Biochem J 322: 567-573, 1997Google Scholar
  13. 13.
    Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, Krieger M: Type I macrophage scavenger receptor contains á-helical and collagen-like coiled coils. Nature 343: 531-535, 1990Google Scholar
  14. 14.
    Rohrer L, Freeman M, Kodama T, Penman M, Krieger M: Coiled-coil fibrous domains mediate ligand binding by macrophage scavenger receptor type II. Nature 343: 570-572, 1990Google Scholar
  15. 15.
    Krieger M: The other side of scavenger receptors: Pattern recognition for host defence. Curr Opin Lipidol 8: 275-280, 1997Google Scholar
  16. 16.
    Yamada Y, Doi T, Hamakubo T, Kodama, T: Scavenger receptor family proteins: Roles for atherosclerosis, host defence and disorders of the central nervous system. Cell Mol Life Sci 54: 628-640, 1998Google Scholar
  17. 17.
    Platt N, da Silva RP, Gordon S: Recognizing death: The phagocytosis of apoptotic cells. Trends Cell Biol 8: 365-372, 1998Google Scholar
  18. 18.
    Terpstra V, van Amersfoort ES, van Velzen AG, Kuiper J, van Berkel TJC: Hepatic and extrahepatic scavenger receptors: Function in relation to disease. Arterioscler Thromb Vasc Biol 20: 1860-1872, 2000Google Scholar
  19. 19.
    Greaves DR, Gough PJ, Gordon S: Recent progress in defining the role of scavenger receptors in lipid transport, atherosclerosis and host defence. Curr Opin Lipidol 9: 425-432, 1998Google Scholar
  20. 20.
    Fraser I, Hughes D, Gordon S: Divalent cation-independent macrophage adhesion inhibited by monoclonal antibody to murine scavenger receptor. Nature 364: 343-346, 1993Google Scholar
  21. 21.
    Hughes DA, Fraser IP, Gordon S: Murine MØ scavenger receptor: Adhesion function and expression. Immunol Lett 43: 7-14, 1994Google Scholar
  22. 22.
    Yokota T, Ehlin-Henriksson B, Hansson GK: Scavenger receptors mediate adhesion of activated B lymphocytes. Exp Cell Res 239: 16-22, 1998Google Scholar
  23. 23.
    Kim JG, Rock JA, Murphy AA, Parthasarathy S: Charge-based interactions of mammalian sperm with oocyted: Inhibition of fertilization of mouse oocytes by ligands of macrophage scavenger receptor(s). Fertility Sterility 68: 1108-1113, 1997Google Scholar
  24. 24.
    Zingg JM, Ricciarelli R, Azzi A: Scavenger receptors and modified lipoproteins: Fatal attractions? IUBMB Life 49: 397-403, 2000Google Scholar
  25. 25.
    Peiser L, Gough PJ, Kodama T, Gordon S: Macrophage class A scavenger receptor-mediated phagocytosis of Escherichia coli: Role of cell heterogeneity, microbial strain, and culture conditions in vitro. Infect Immun 68: 1953-1963, 2000Google Scholar
  26. 26.
    Hughes DA, Fraser IP, Gordon S: Murine macrophage scavenger receptor: In vivo expression and function as receptor for macrophage adhesion in lymphoid and non-lymphoid organs. Eur J Immunol 25: 466-473, 1995Google Scholar
  27. 27.
    Juvet L, Løvdal T, Kjeken R, Berg T, Gjøen T: Role of receptors and endocytosis in hepatic sinusoidal cells. Cells Hepat Sinus 7: 43-48, 1999Google Scholar
  28. 28.
    Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Ueda O, Sakaguchi H, Higashi T, Suzuki T, Takashima Y, Kawabe Y, Cynshi O, Wada Y, Honda M, Kurihara H, Aburatani H, Doi T, Matsumoto A, Azuma S, Noda T, Toyada Y, Itakura H, Yasaki Y, Horiuchi S, Takahashi K, Kar Kruijt J, van Berkel TJC, Steinbrecher UP, Ishibashi S, Maeda N, Gordon S, Kodama T: A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386: 292-296, 1997Google Scholar
  29. 29.
    Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Sakaguchi H, Kar Kruijt J, Higashi T, Suzuki T, van Berkel TJC, Horiuchi S, Takahashi K, Yazaki, Y, Kodama, T: The multiple roles of macrophage scavenger receptor (MSR) in vivo: Resistance to atherosclerosis and susceptibility to infection in MSR knockout mice. J Atheroscler Thromb 4: 1-11, 1997Google Scholar
  30. 30.
    Nogami S, Watanabe J, Nakagaki K, Nakata K, Suzuki H, Fujisawa M, Kodama, T, Kojima, S: Involvement of macrophage scavenger receptors in protection against murine malaria. Am J Trop Med Hyg 59: 843-845, 1998Google Scholar
  31. 31.
    Haworth R, Platt N, Keshav S, Hughes D, Darley E, Suzuki H, Kurihara Y, Kodama T, Gordon S: The macrophage scavenger receptor type A is expressed by activated macrophages and protects the host against lethal endotoxic shock. J Exp Med 186: 1431-1439, 1997Google Scholar
  32. 32.
    Ling W, Lougheed M, Suzuki H, Buchan A, Kodama T, Steinbrecher UP (1997) Oxidized or acetylated low density lipoproteins are rapidly cleared by the liver in mice with disruption of the scavenger receptor class A type I/II gene. J Clin Invest 100: 244-252, 1997Google Scholar
  33. 33.
    Van Berkel TJC, Van Velzen A, Kruijt JK, Suzuki H, Kodama T: Uptake and catabolism of modified LDL in scavenger-receptor class A type I/II knock-out mice. Biochem J 331: 29-35, 1998Google Scholar
  34. 34.
    Matsumoto K, Sano H, Nagai R, Suzuki H, Kodama T, Yoshida M, Ueda S, Smedsrød B, Horiuchi S: Endocytic uptake of advanced glycation end products by mouse liver sinusoidal endothelial cells is mediated by a scavenger receptor distinct from the macrophage scavenger receptor class A. Biochem J 352: 233-240, 2000Google Scholar
  35. 35.
    Mego JL, Bertini F, McQueen JD: The use of formaldehyde-treated 131Ialbumin in the study of digestive vacuoles and some properties of these particles from mouse liver. J Cell Biol 32: 699-707, 1967Google Scholar
  36. 36.
    Takata K, Horiuchi S, Araki N, Shiga M, Saitoh M, Morino Y: Endocytic uptake of nonenzymatically glycosylated proteins is mediated by a scavenger receptor for aldehyde-modified proteins. J Biol Chem 263: 14819-14825, 1988Google Scholar
  37. 37.
    Markwell MAK: A new solid-state reagent to iodonate proteins. I. Conditions for the efficient labeling of antiserum. Anal Biochem 125: 427-432, 1982Google Scholar
  38. 38.
    Smedsrød B, Pertoft H, Eggertsen G, Sundstrøm C: Functional and morphological characterization of cultures of Kuppfer cells and liver endothelial cells prepared by means of density separation in Percoll, and selective adherence. Cell Tissue Res 241: 639-649, 1985Google Scholar
  39. 39.
    Magnusson S, Berg T: Endocytosis of ricin by rat liver cells in vivo and in vitro is mainly mediated by mannose receptor on sinusoidal endothelial cells. Biochem J 291: 749-755, 1993Google Scholar
  40. 40.
    Blomhoff R, Eskild W, Berg T: Endocytosis of formaldehyde-treated serum albumin via scavenger pathway in liver endothelial cells. Biochem J 218: 81-86, 1984Google Scholar
  41. 41.
    Kjeken R, Mousavi SA, Brech A, Gjoen T, Berg T: Fluid phase endocytosis of [125I]iodixanol in rat liver parenchymal, endothelial and Kupffer cells. Cell Tissue Res 304: 221-230, 2001Google Scholar
  42. 42.
    Maeno Y, Fujioka H, Hollingdale MR, Ockenhouse CF, Nakazawa S, Aikawa M: Ultrastructural localization of CD36 in human hepatic sinusoidal lining cells, hepatocytes, human hepatoma (HepG2-A16) cells, and C32 amelanotic melanoma cells. Exp Parasitol 79: 383-390, 1994Google Scholar
  43. 43.
    Ohgami N, Nagai R, Miyazaki A, Ikemoto M, Arai H, Horiuchi S, Nakayama H: Scavenger receptor class B type I-mediated reverse cholesterol transport is inhibited by advanced glycation end products. J Biol Chem 276: 13348-13355, 2001Google Scholar
  44. 44.
    Ohgami N, Nagai R, Ikemoto M, Arai H, Kuniyasu A, Horiuchi S, Nakayama H: CD36, a member of class B scavenger receptor family, as a receptor for advanced glycation end products (AGE). J Biol Chem 276: 3195-3202, 2001Google Scholar
  45. 45.
    Zhu W, Sano H, Nagai R, Fukuhara K, Miyazak A, Horiuchi S: The role of galectin-3 in endocytosis of advanced glycation end products and modified low density lipoproteins. Biochem Biophys Res Commun 280: 1183-1188, 2001Google Scholar
  46. 46.
    McCourt PA, Smedsrød B., Melkko J, Johansson S: Characterization of a hyaluronan receptor on rat sinusoidal liver endothelial cells and its functional relationship to scavenger receptors. Hepatology 30: 1276-1286, 1999Google Scholar
  47. 47.
    Pertoft H, Smedsrød, B: Separation and characterizaton of liver cells. In: T.G. Prelow, T.P. Pretlow (eds). Cell Separation: Methods and Selected Applications, vol. 4. Academic Press, New York, 1987, pp 1-24Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Berit Hansen
    • 1
    • 2
  • Beatriz Arteta
    • 1
    • 3
  • Bård Smedsrød
    • 1
  1. 1.Department of Experimental Pathology, Institute of Medical BiologyUniversity of TromsøTromsøNorway
  2. 2.Department of DermatologyUniversity Medical Center Mannheim, Ruprecht-Karls University HeidelbergMannheimGermany
  3. 3.Department of Cellular Biology and Morphological SciencesUniversity of Basque CountryVizcayaSpain

Personalised recommendations