Skip to main content
Log in

Protein Structure Prediction in a 210-Type Lattice Model: Parameter Optimization in the Genetic Algorithm Using Orthogonal Array

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

We have applied the orthogonal array method to optimize the parameters in the genetic algorithm of the protein folding problem. Our study employed a 210-type lattice model to describe proteins, where the orientation of a residue relative to its neighboring residue is described by two angles. The statistical analysis and graphic representation show that the two angles characterize protein conformations effectively. Our energy function includes a repulsive energy, an energy for the secondary structure preference, and a pairwise contact potential. We used orthogonal array to optimize the parameters of the population, mating factor, mutation factor, and selection factor in the genetic algorithm. By designing an orthogonal set of trials with representative combinations of these parameters, we efficiently determined the optimal set of parameters through a hierarchical search. The optimal parameters were obtained from the protein crambin and applied to the structure prediction of cytochrome B562. The results indicate that the genetic algorithm with the optimal parameters reduces the computing time to reach a converged energy compared to nonoptimal parameters. It also has less chance to be trapped in a local energy minimum, and predicts a protein structure which is closer to the experimental one. Our method may also be applicable to many other optimization problems in computational biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Chou, P. Y., and Fasman, G. D. (1974). Prediction of protein conformation, Biochemistry 13, 222–245.

    Article  CAS  PubMed  Google Scholar 

  • Cui, Y., Chen, R. S., and Wong, W. H. (1998). Protein folding simulation with genetic algorithm and supersecondary structure constraints, Proteins Struct. Funct. Genet. 31, 247–257.

    Article  CAS  PubMed  Google Scholar 

  • Dandekar, T., and Argos, P. (1994). Folding the main chain of small proteins with the genetic algorithm, J. Mol. Biol. 236, 844–861.

    Article  CAS  PubMed  Google Scholar 

  • Kota, S., and Chiou, S. (1993). Use of orthogonal arrays in mechanism synthesis, Mechanical Machine Theory 28, 777–794.

    Article  Google Scholar 

  • Lederer, F., Glatigny, A., Bethge, P. H., Bellamy, H. D., and Matthew, F. S. (1981). Improvement of the 2.5 Å resolution model of cytochrome b562 by redetermining the primary structure and using molecular graphics, J. Mol. Biol. 148, 427–448.

    Article  CAS  PubMed  Google Scholar 

  • Mathews, F. S., Bethge, P. H., and Czerwinski, E. W. (1979). The structure of cytochrome b562 from Escherichia coli at 2.5 Å resolution, J. Biol. Chem. 254, 1699–1706.

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa, S., and Jernigan, R. L. (1985). Estimation of effective interresidue contact energies from protein crystal structures: Quasichemical approximation. Macromolecules 18, 534–552.

    Article  CAS  Google Scholar 

  • Miyazawa, S., and Jernigan, R. L. (1996). Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading, J. Mol. Biol. 256, 623–644.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen, J. T., and Moult, J. (1997). Protein folding simulations with genetic algorithms and a detailed molecular description, J. Mol. Biol. 269, 240–259.

    Article  CAS  PubMed  Google Scholar 

  • Rabow, A. A., and Scheraga, H. A. (1996). Improved genetic algorithm for the protein folding problem by use of a Cartesian combination operator, Protein Sci. 5, 1800–1815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross, R. J. (1996). Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design, McGraw-Hill, New York.

    Google Scholar 

  • Sali, A., Shakhnovich, E., and Karplus, M. (1994). Kinetics of protein folding a lattice model study of the requirements for folding to the native state, J. Mol. Biol. 235, 1614–1636.

    CAS  PubMed  Google Scholar 

  • Skolnick, J., and Kolinski, A. (1991). Dynamic Monte Carlo simulations of a new lattice model of globular protein folding, structure and dynamics, J. Mol. Biol. 221, 499–531.

    Article  CAS  PubMed  Google Scholar 

  • So, S. S., and Karplus, M. (1996). Evolutionary optimization in quantitative structure-activity relationship: An application of genetic neural networks, J. Med. Chem. 39, 1521–1530.

    Article  CAS  PubMed  Google Scholar 

  • Sun, S. (1995). A genetic algorithm that seeks native states of peptides and proteins, Biophys. J. 69, 340–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taguchi, G. (1986). Introduction to Quality Engineering: Designing Quality into Products and Processes, Asian Productivity Organization, Tokyo.

    Google Scholar 

  • Unger, R., and Moult, J. (1992). Potential of genetic algorithms in protein folding and protein engineering simulations, J. Mol. Biol. 5, 637–645.

    Google Scholar 

  • Unger, R., and Moult, J. (1993). Genetic algorithms for protein folding simulations, J. Mol. Biol. 231, 75–81.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Wong, M. K., Lee, H. K., and Ong, C. N. (1996). Orthogonal array design for optimizing the capillary zone electrophoretic analysis of heterocyclic amines, J. Chromatogr. Sci. 34, 139–145.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z., Xia, X., Guo, Q. et al. Protein Structure Prediction in a 210-Type Lattice Model: Parameter Optimization in the Genetic Algorithm Using Orthogonal Array. J Protein Chem 18, 39–46 (1999). https://doi.org/10.1023/A:1020643331894

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020643331894

Navigation