Skip to main content
Log in

Effect of Co substitution for Mn on Y1−x Sr x MnO3 properties for SOFC cathode material

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Y0.6Sr0.4Mn1−y Co y O3 (0 ≤ y ≤ 0.4) perovskite oxides were prepared by the coprecipitation method. The effect of Co substitution for Mn on the crystal structure, electrical conductivity and thermal expansion properties were investigated. By X-ray powder diffraction, the crystal structure was found to change from hexagonal symmetry of Y0.8Sr0.2MnO3 to orthorhombic of Y0.6Sr0.4Mn1−y Co y O3. The differences in the structure of the unsubstituted Y1−x Sr x MnO3 (0.2 ≤ x ≤ 0.4) are attributed to the average ionic radii of the cations and the amounts of Mn4+ present. The results of electrical conductivity analysis can be described by the small polaron hopping conductivity model. With Co substitution, the activation energy increases, possibly due to an increase of Jahn–Teller distortion, at an extent higher than the increase of the concentration of charge carriers; thus, the electrical conductivity decreases. In addition, the relative densities of the materials reached ∼94% with sintering at 1350°C for 12 h and had higher concentration of the available lattice sites, thus showing higher conductivity, than that with sintering at 1300°C for 6 h, which achieved ∼70% relative density. It is also found that the thermal expansion coefficient (TEC) increases as the Sr and Co content of Y1−x Sr x Mn1−y Co y O3 increases and those with Co content of y = 0.2 exhibit TEC compatibility with YSZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. GELLINGS and H. J. M. BOUWMEESTER, in “The CRC Handbook of Solid State Electrochemistry” (CRC Press, New York, 1997) p. 407.

    Google Scholar 

  2. J. H. KUO, H. U. ANDERSON and D. M. SPARLIN, J. Solid State Chem. 87 (1990) 55.

    Google Scholar 

  3. H. U. ANDERSON, Solid State Ionics 52 (1992) 33.

    Google Scholar 

  4. O. YAMAMOTO, Y. TAKEDA, R. KANNO and M. NODA, ibid. 22 (1987) 241.

    Google Scholar 

  5. B. FU and W. HUEBNER, Mater. Res. Soc. 9 (1994) 2645.

    Google Scholar 

  6. L. A. TIKHONOVA, P. P. ZHUK, A. A. VECHER and M. V. ZINKEVICH, Inorg. Mater. 28 (1992) 1535.

    Google Scholar 

  7. N. GUNASEKARAN, N. BAKSHI, C. B. ALCOCK and J. J. CARBERRY, Solid State Ionics 83 (1996) 145.

    Google Scholar 

  8. R. RAFFAELLE, H. U. ANDERSON, D. M. SPARLIN and P. E. PARRIS, Phys. Rev. Lett. 65 (1990) 1383.

    Google Scholar 

  9. J. W. STEVENSON, M. M. NASRALLAH, H. U. ANDERSON and D. M. SPARLIN, J. Solid State Chem. 102 (1993) 175.

    Google Scholar 

  10. J. A. ALONSO and M. J. MARTÍNEZ-LOPE, Inorg. Chem. 39 (2000) 917.

    Google Scholar 

  11. C. MOURE, M. VILLEGAS, J. F. FERNANDEZ, J. TARTAJ and P. DURAN, J. Mater. Sci. 34 (1999) 2565.

    Google Scholar 

  12. R. D. SHANNON, Acta Crtallogr. A 32 (1976) 751.

    Google Scholar 

  13. M. KERTESZ, I. RIESS, D. S. TANNHAUSER, R. LANGPAGE and F. J. ROHR, J. Solid State Chem. 42 (1982) 125.

    Google Scholar 

  14. M. H. HUANG, Ph. D Thesis, Imperial College, London (1991) p. 118.

  15. J. B. GOODENOUGH, J. Appl. Phys. 37 (1966) 1415.

    Google Scholar 

  16. R. KOC and H. U. ANDERSON, J. Eur. Ceram. Soc. 15 (1995) 867.

    Google Scholar 

  17. E. POLLERT, S. KRUPICKA and E. KUZMICOVA, J. Phys. Chem. Solid 43 (1982) 1137.

    Google Scholar 

  18. N. GAYATHRI, A. K. RAYCHAUDHURI and S. K. TIWARY, Phys. Rev. B 56 (1997) 1345.

    Google Scholar 

  19. S. Y. BAE, D. J. SNYDER and S. X. WANG, J. Electr. Mater. 27 (1998) 1.

    Google Scholar 

  20. P. M. RACCAH and J. B. GOODENOUGH, Phys. Rev. 155 (1967) 932.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ta-Jen Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CY., Huang, TJ. Effect of Co substitution for Mn on Y1−x Sr x MnO3 properties for SOFC cathode material. Journal of Materials Science 37, 4581–4587 (2002). https://doi.org/10.1023/A:1020640114502

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020640114502

Keywords

Navigation