Advertisement

Journal of Protein Chemistry

, Volume 18, Issue 2, pp 225–231 | Cite as

Preparative High-Resolution Two-Dimensional Electrophoresis Enables the Identification of RNA Polymerase B Transcription Factor 3 as an Apoptosis-Associated Protein in the Human BL60–2 Burkitt Lymphoma Cell Line

  • Ekkehard Brockstedt
  • Albrecht Otto
  • Anke Rickers
  • Kurt Bommert
  • Brigitte Wittmann-Liebold
Article

Abstract

Apoptosis or programmed cell death is essential in the process of controlling lymphocyte growth and selection. We identified RNA polymerase B transcription factor 3 (BTF3), which is associated with anti-IgM antibody-mediated apoptosis, using a subclone of the human Burkitt lymphoma cell line BL60. To identify the transcription factor BTF3, which is expressed only in minor amounts, we used preparative high-resolution two-dimensional gel electrophoresis (2DE) employing carrier ampholytes for isoelectric focusing. Comparison of the 2DE protein patterns from apoptotic and nonapoptotic cells showed BTF3 as a predominantly altered protein spot. The characterization of the differentially expressed transcription factor and 13 marker proteins described in this study were performed by internal Edman microsequencing and/or by peptide mass fingerprinting using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The proteome analysis was significantly improved by performing the newly developed preparative high-resolution two-dimensional gels employing high protein concentrations.

Two-dimensional electrophoresis MALDI-MS apoptosis RNA polymerase B transcription factor 3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Aebersold, R., and Leavitt, J. (1990). Electrophoresis 11, 517–527.Google Scholar
  2. Bjellqvist, B., Sanchez, J. C., Pasquali, C., Ravier, F., Paquet, N., Frutiger, S., Hughes, G. J., and Hochstrasser, D. (1993). Electrophoresis 14, 1375–1378.Google Scholar
  3. Boise, L. H., and Thompson, C. B. (1996). Science 274, 67–68.Google Scholar
  4. Brockstedt, E., Rickers, A., Kostka, S., Laubersheimer, A., Dörken, B., Wittmann-Liebold, B., Bommert, K., and Otto, A. (1998). J. Biol. Chem. 273, 28057–28064.Google Scholar
  5. Deng, J. M., and Behringer, R. R. (1995). Transgenic Res. 4, 264–269.Google Scholar
  6. Eckerskorn, C., Jungblut, P., Mewes, W., Klose, J., and Lottspeich, F. (1988). Electrophoresis 9, 830–838.Google Scholar
  7. Emoto, Y., Manome, Y., Meinhardt, G., Kisaki, H., Kharbanda, S., Robertson, M., Ghayur, T., Wong, W. W., Kamen, R., Weichselbaum, R., and Kufe, D. (1995). EMBO J. 14, 6148–6156.Google Scholar
  8. Gevaert, K., Rider, M., Puype, M., Van Damme, J., De Boeck, S., and Vandekerckhove, J. (1995). In Methods in Structure Analysis (Atassi, Z. M., and Apella, E., eds.), Plenum Press, New York, pp. 15–20.Google Scholar
  9. Görg, A., Postel, W., Domscheit, A., and Günther, S. (1988). Electrophoresis 9, 531–546.Google Scholar
  10. Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimley, C., and Watanabe, C. (1993). Proc. Natl. Acad. Sci. USA 90, 5011–5015.Google Scholar
  11. Jacobson, M. D., Weil, M., and Raff, M. C. (1997). Cell 88, 347–354.Google Scholar
  12. Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972). Br. J. Cancer 26, 239–257.Google Scholar
  13. Klose, J. (1975). Humangenetik 26, 231–243.Google Scholar
  14. Klose, J., and Kobalz, U. (1995). Electrophoresis 16, 1034–1059.Google Scholar
  15. Laemmli, U. K. (1970). Nature 227, 680–685.Google Scholar
  16. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G., and Earnshaw, W. C. (1994). Nature 371, 346–347.Google Scholar
  17. Martin, S. J., Green, D. R., and Cotter, T. G. (1994). Trends Biochem. Sci. 19, 26–30.Google Scholar
  18. Mashima, T., Naito, M., Noguchi, K., Miller, D. K., Nicholson, D. W., and Tsuruo, T. (1997). Oncogene 14, 1007–1012.Google Scholar
  19. Meltzer, N. M., Tous, G. I., Gruber, S., and Stein, S. (1987). Anal. Biochem. 160, 356–361.Google Scholar
  20. O'Farrell, P. H. (1975). J. Biol. Chem. 250, 4007–4021.Google Scholar
  21. Otto, A., Thiede, B., Müller, E. C., Scheler, C., Wittmann Liebold, B., and Jungblut, P. (1996). Electrophoresis. 17, 1643–1650.Google Scholar
  22. Pasternack, M. S., Bleier, K. J., and McInerney, T. N. (1991). J. Biol. Chem. 266, 14703–14708.Google Scholar
  23. Rao, L., Perez, D., and White, E. (1996). J. Cell Biol. 135, 1441–1455.Google Scholar
  24. Rickers, A., Brockstedt, E., Mapara, M. Y., Otto, A., Dörken, B., and Bommert, K. (1998). Eur. J. Immunol. 28, 296–304.Google Scholar
  25. Song, Q. I. (1996). EMBO J. 15, 3238–3246.Google Scholar
  26. Steller, H. (1995). Science 267, 1445–1449.Google Scholar
  27. Thiede, B., Otto, A., Zimny-Arndt, U., Müller, E. C., and Jungblut, P. (1996). Electrophoresis 17, 588–599.Google Scholar
  28. Waterhouse, N., et al. (1996). J. Biol. Chem. 271, 29335–29341.Google Scholar
  29. Wittmann-Liebold, B., and Jungblut, P. (1994). In Concepts in Protein Engineering and Design (Wrede, P., and Schneider, G., eds.), de Gruyter, Berlin, pp. 47–107.Google Scholar
  30. Yokote, Y., Arai, K. M., and Akahane, K. (1986). Anal. Biochem. 152, 245–249.Google Scholar
  31. Zheng, X. M., Moncollin, V., Egly, J. M., and Chambon, P. (1987). Cell 50, 361–368.Google Scholar
  32. Zheng, X. M., Black, D., Chambon, P., and Egly, J. M. (1990). Nature 344, 556–559.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Ekkehard Brockstedt
    • 1
  • Albrecht Otto
    • 1
  • Anke Rickers
    • 1
  • Kurt Bommert
    • 1
  • Brigitte Wittmann-Liebold
    • 1
  1. 1.Max-Delbrück-Center for Molecular MedicineBerlinGermany

Personalised recommendations