Skip to main content
Log in

Genome plasticity in Lactococcus lactis

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Comparative genome analyses contribute significantly to our understanding of bacterial evolution and indicate that bacterial genomes are constantly evolving structures. The gene content and organisation of chromosomes of lactic acid bacteria probably result from a strong evolutionary pressure toward optimal growth of these microorganisms in milk. The genome plasticity of Lactococcus lactis was evaluated at inter- and intrasubspecies levels by different experimental approaches. Comparative genomics showed that the lactococcal genomes are not highly plastic although large rearrangements (a.o. deletions, inversions) can occur. Experimental genome shuffling using a new genetic strategy based on the Cre-loxP recombination system revealed that two domains are under strong constraints acting to maintain the original chromosome organisation: a large region around the replication origin, and a smaller one around the putative terminus of replication. Future knowledge of the rules leading to an optimal genome organisation could facilitate the definition of new strategies for industrial strain improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abremski K, Hoess R& Sternberg N (1983) Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. Cell 32: 1301–1311.

    Google Scholar 

  • Anagnostopoulos C (1990) Genetic rearrangements in Bacillus subtilis. In: Drlica K& Riley M (Eds) The Bacterial Chromosome. (pp 361-371). American Society For Microbiology, Washington, DC.

    Google Scholar 

  • Bergthorsson U& Ochman H (1998) Distribution of chromosome length variation in natural isolates of Escherichia coli. Mol. Biol. Evol. 15: 6–16.

    Google Scholar 

  • Bolotin A, Ehrlich D&Sorokin A (2002) Studies of genomes of dairy bacteria Lactococcus lactis. Science des Aliments. In press.

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD& Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11: 731–753.

    Google Scholar 

  • Campo N, Daveran-Mingot M-L, Leenhouts KJ, Ritzenthaler P& Le Bourgeois P (2002) A Cre/loxP recombination system for large genome rearrangements in Lactococcus lactis. Appl. Environ. Microbiol. 68: 2359–2367.

    Google Scholar 

  • Canard B, Saint-Joanis B& Cole ST (1992) Genomic diversity and organization of virulence genes in the pathogenic anaerobe Clostridium perfringens. Mol. Microbiol. 6: 1421–1429.

    Google Scholar 

  • Carlson CR, Gronstad A& Kolsto AB (1992) Physical maps of the genomes of three Bacillus cereus strains. J. Bacteriol. 174: 3750–3756.

    Google Scholar 

  • Casjens S (1998) The diverse and dynamic structure of bacterial genomes. Annu. Rev. Genet. 32: 339–377.

    Google Scholar 

  • Chopin A, Bolotin A, Sorokin A, Ehrlich SD& Chopin MC (2001) Analysis of six prophages in Lactococcus lactis IL1403: different genetic structure of temperate and virulent phage populations. Nucleic Acids Res. 29: 644–651.

    Google Scholar 

  • Cole ST, Supply P& Honore N (2001) Repetitive sequences in Mycobacterium leprae and their impact on genome plasticity. Lepr. Rev. 72: 449–461.

    Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16: 10881–10890.

    Google Scholar 

  • Cramton SE, Gerke C, Schnell NF, Nichols WW& Gotz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect. Immun. 67: 5427–5433.

    Google Scholar 

  • Daveran-Mingot M-L, Campo N, Ritzenthaler P& Le Bourgeois P (1998) A natural large chromosomal inversion in Lactococcus lactis is mediated by homologous recombination between two insertion sequences. J. Bacteriol. 180: 4834–4842.

    Google Scholar 

  • Davidson BE, Kordias N, Dobos M& Hillier AJ (1996) Genomic organization of lactic acid bacteria. In: Venema G, Huis in't Veld JHJ& Hugenholtz J (Eds) Lactic Acid Bacteria: Genetics, Metabolism and Applications (pp 65–87). Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Davies FL, Underwood HM& Gasson MJ (1981) The value of plasmid profile for strain identification in lactic streptococci and the relationship between Streptococcus lactis 712, ML3 and C2. J. Appl. Bacteriol. 51: 325–337.

    Google Scholar 

  • DeBoy RT& Craig NL (1996) Tn7 transposition as a probe of cis acting interaction between widely separated (190 kilobases apart) DNA sites in the Escherichia coli chromosome. J. Bacteriol. 178: 6184–6191.

    Google Scholar 

  • François V, Louarn J, Rebollo JE& Louarn JM (1990) Replication termination, nondivisible zones, and structure of the Escherichia coli chromosome. In: Drlica K& Riley M (Eds) The Bacterial Chromosome (pp 351–359). American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Gasson MJ& Davies FL (1980) High-frequency conjugation associated with Streptococcus lactis donor cell aggregation. J. Bacteriol. 143: 1260–1264.

    Google Scholar 

  • Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couve E, de Daruvar A, Dehoux P, Domann E, Dominguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian KD, Fsihi H, Portillo FG, Garrido P, Gautier L, Goebel W, Gomez-Lopez N, Hain T, Hauf J, Jackson D, Jones LM, Kaerst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, Madueno E, Maitournam A, Vicente JM, Ng E, Nedjari H, Nordsiek G, Novella S, de Pablos B, Perez-Diaz JC, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, Tierrez A, Vazquez-Boland JA, Voss H, Wehland J& Cossart P (2001) Comparative genomics of Listeria species. Science 294: 849–852.

    Google Scholar 

  • Janssen PJ, Audit B& Ouzounis CA (2001) Strain-specific genes of Helicobacter pylori: distribution, function and dynamics. Nucleic Acids Res. 29: 4395–4404.

    Google Scholar 

  • Le Bourgeois P, Daveran-Mingot ML& Ritzenthaler P (2000) Genome plasticity among related Lactococcus strains: identification of genetic events associated with macrorestriction polymorphisms. J. Bacteriol. 182: 2481–2491.

    Google Scholar 

  • Le Bourgeois P, Lautier M, Mata M& Ritzenthaler P (1992) Physical and genetic map of the chromosome of Lactococcus lactis subsp. lactis IL1403. J. Bacteriol. 174: 6752–6762.

    Google Scholar 

  • Le Bourgeois P, Lautier M, van den Berghe L, Gasson MJ& Ritzenthaler P (1995) Physical and genetic map of the Lactococcus lactis subsp. cremoris MG1363 chromosome: comparison with that of Lactococcus lactis subsp. lactis IL1403 reveals a large genome inversion. J. Bacteriol. 177: 2840–2850.

    Google Scholar 

  • Leblond P& Decaris B (1998) Chromosome geometry and intraspecific genetic polymorphism in Gram-positive bacteria revealed by pulsed-field gel electrophoresis. Electrophoresis 19: 582–588.

    Google Scholar 

  • Leblond P, Fischer G, Francou FX, Berger F, Guérineau M& Decaris B (1996) The unstable region of Streptomyces ambofaciens includes 210 kb terminal inverted repeats flanking the extremities of the linear chromosome. Mol. Microbiol. 19: 261–271.

    Google Scholar 

  • Liu SL& Sanderson KE (1995) I-CeuI reveals conservation of the genome of independent strains of Salmonella typhimurium. J. Bacteriol. 177: 3355–3357.

    Google Scholar 

  • Liu SL& Sanderson KE (1996) Highly plastic chromosomal organization in Salmonella typhi. Proc. Natl. Acad. Sci. U.S.A. 93: 10303–10308.

    Google Scholar 

  • Maguin E, Prévots H, Ehrlich SD& Gruss A (1996) Efficient insertional mutagenesis in Lactococci and other Gram-positive bacteria. J. Bacteriol. 178: 931–935.

    Google Scholar 

  • Mahillon J& Chandler M (1998) Insertion sequences. Microbiol. Mol. Biol. Rev. 62: 725–774.

    Google Scholar 

  • McKay LL, Baldwin KA& Efstathiou JD (1976) Transductional evidence for plasmid linkage of lactose metabolism in Streptococcus lactis C2. Appl. Environ. Microbiol. 32: 45–52.

    Google Scholar 

  • Nandi S, Khetawat G, Sengupta S, Majumder R, Kar S, Bhadra RK, Roychoudhury S& Das J (1997) Rearrangements in the genomes of Vibrio cholerae strains belonging to different serovars and biovars. Int. J. Syst. Bacteriol. 47: 858–862.

    Google Scholar 

  • Niki H, Yamaichi Y& Hiraga S (2000) Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev. 14: 212–223.

    Google Scholar 

  • Nikolskaya T, Fonstein M& Haselkorn R (1995) Alignment of a 1.2 Mb chromosomal region from three strains of Rhodobacter capsulatus reveals a significantly mosaic structure. Proc. Natl. Acad. Sci. U.S.A. 92: 10609–10613.

    Google Scholar 

  • Papadopoulos D, Schneider D, Meier-Eiss J, Arber W, Lenski RE& Blot M (1999) Genomic evolution during a 10,000-generation experiment with bacteria. Proc. Natl. Acad. Sci. U.S.A. 96: 3807–3812.

    Google Scholar 

  • Perkins JD, Don Heath J, Sharma BR& Weinstock GM (1993) XbaI and BlnI genomic cleavage maps of Escherichia coli K-12 strain MG1655 and comparative analysis of other strains. J. Mol. Biol. 232: 419–445.

    Google Scholar 

  • Rebollo JE, François V& Louarn JM (1988) Detection and possible role of two large nondivisible zones on the Escherichia coli chromosome. Proc. Natl. Acad. Sci. U. S. A. 85: 9391–9395.

    Google Scholar 

  • Redenbach M, Flett F, Piendl W, Glocker I, Rauland U, Wafzig O, Kliem R, Leblond P& Cullum J (1993) The Streptomyces lividans 66 chromosome contains a 1 Mb deletogenic region flanked by two amplifiable regions. Mol. Gen. Genet. 241: 255–262.

    Google Scholar 

  • Rocha EP, Danchin A& Viari A (1999) Universal replication biases in bacteria. Mol. Microbiol. 32: 11–16.

    Google Scholar 

  • Roth JR, Benson N, Galitsky T, Haack K, Lawrence JG& Miesel L (1996) Rearrangements of the bacterial chromosome: formation and applications. In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Resnikoff WS, Riley M, Schaechter M& Umbarger HE (Eds) Escherichia coli and Salmonella: Cellular and Molecular Biology. (pp 2256–2276). ASM Press, Washington, DC.

    Google Scholar 

  • Roussel Y, Bourgoin F, Guedon G, Pebay M& Decaris B (1997) Analysis of the genetic polymorphism between three Streptococcus thermophilus strains by comparing their physical and genetic organization. Microbiology 143: 1335–1343.

    Google Scholar 

  • Römling U, Greipel J& Tümmler B (1995) Gradient of genomic diversity in the Pseudomonas aeruginosa chromosome. Mol. Microbiol. 17: 323–332.

    Google Scholar 

  • Segall AM, Mahan MJ& Roth JR (1988) Rearrangement of the bacterial chromosome: forbidden inversions. Science 241: 1314–1318.

    Google Scholar 

  • Stibitz S& Yang MS (1997) Genomic fluidity of Bordetella pertussis assessed by a new method for chromosomal mapping. J. Bacteriol. 179: 5820–5826.

    Google Scholar 

  • Syvanen M (1997) Insertion sequences and their evolutionary role. In: de Bruijn FJ, Lupski JR& Weinstock GM (Eds) Bacterial Genomes: Physical Structure and Analysis (pp 213–220). Chapman&Hall, NY.

    Google Scholar 

  • Tigges E& Minion FC (1994) Physical map of Mycoplasma galliseptum. J. Bacteriol. 176: 4157–4159.

    Google Scholar 

  • Toda T, Tanaka T& Itaya M (1996) A method to invert DNA segments of the Bacillus subtilis 168 genome by recombination between homologous sequences. Biosci. Biotech. Biochem. 60: 773–778.

    Google Scholar 

  • Tynkkynen S, Buist G, Kunji ERS, Kok J, Poolman B, Venema G& Haandrikman AJ (1993) Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis. J. Bacteriol. 175: 7523–7532.

    Google Scholar 

  • Walsh PM& McKay LL (1981) Recombinant plasmid associated with cell aggregation and high-frequency conjugation in Streptococcus lactis ML3. J. Bacteriol. 146: 937–944.

    Google Scholar 

  • Watanabe H, Mori H, Itoh T& Gojobori T (1997) Genome plasticity as a paradigm of eubacteria evolution. J. Mol. Evol. 44 (Suppl 1): S57–S64.

    Google Scholar 

  • Yu W, Gillies K, Kondo JK, Broadbent JR& McKay LL (1996) Loss of plasmid-mediated oligopeptide transport system in Lactococci: another reason for slow milk coagulation. Plasmid 35: 145–155.

    Google Scholar 

  • Zuerner RL, Herrmann JL& Saint Girons I (1993) Comparison of genetic maps for two Leptospira interrogans serovars provides evidence for two chromosomes and intraspecies heterogeneity. J. Bacteriol. 175: 5445–5451

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Ritzenthaler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campo, N., Dias, M.J., Daveran-Mingot, ML. et al. Genome plasticity in Lactococcus lactis . Antonie Van Leeuwenhoek 82, 123–132 (2002). https://doi.org/10.1023/A:1020633010337

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020633010337

Navigation