Skip to main content
Log in

Pathophysiology of the Ischemic Penumbra—Revision of a Concept

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The original concept of the ischemic penumbra surrounding a focus of dense cerebral ischemia is based on electrophysiological observations. In the cortex of baboons following middle cerebral artery occlusion, complete failure of the cortical evoked potential was observed at a cerebral blood flow (CBF) threshold level of approx. 0.15 ml/g/min—a level at which extracellular potassium ion activity was only mildly elevated. With a greater CBF decrement to the range of 0.06–0.10 ml/g/min, massive increases in extracellular potassium occurred and were associated with complete tissue infarction. Thus, the ischemic penumbra has been conceptualized as a region in which CBF reduction has exceeded the threshold for failure of electrical function but not that for membrane failure.

2. Recent studies demonstrate that the penumbra as defined classically by the flow thresholds does not survive prolonged periods of ischemia. The correlation of CBF autoradiograms with diffusion-weighted MR images and the regional distribution of cerebral metabolites reveals that the ischemic core region enlarges when adjacent, formerly penumbral, areas undergo irreversible deterioration during the initial hours of vascular occlusion. At the same time, the residual penumbra becomes restricted to the periphery of the ischemic territory, and its fate may depend critically upon early therapeutic intervention.

3. In the border zone of brain infarcts, marked uncoupling of local CBF and glucose utilization is consistently observed. The correlation with electrophysiological measurements shows that metabolism-flow uncoupling is associated with sustained deflections of the direct current (DC) potential resembling transient depolarizations. Such penumbral cell depolarizations, which are associated with an increased metabolic workload, induce episodes of tissue hypoxia due to the constrained collateral flow, stimulate anaerobic glycolysis leading to lactacidosis, suppress protein synthesis, and, finally, compromise energy metabolism. The frequency of their occurrence correlates with the final volume of ischemic injury. Therefore, penumbral depolarizations are regarded as a key event in the pathogenesis of ischemic brain injury. Periinfarct DC deflections can be suppressed by NMDA and non-NMDA antagonists, resulting in a significant reduction of infarct size.

4. The histopathological sequelae within the penumbra consist of various degrees of scattered neuronal injury, also termed “incomplete infarction.” The reduction of neuronal density at the infarct border is a flow- and time-dependent event which is accompanied by an early response of glial cells. As early as 3 hr after vascular occlusion a generalized microglial activation can be detected throughout the ipsilateral cortex. Astrocytic activation is observed in the intact parts of the ischemic hemisphere from 6 hr postocclusion onward. Thus, the penumbra is a spatially dynamic brain region of limited viability which is characterized by complex pathophysiological changes involving neuronal function as well as glial activation in response to local ischemic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abe, K., Yuki, S., and Kogure, K. (1988). Strong attenuation of ischemic and postischemic brain edema in rats by a novel free radical scavenger. Stroke 19:480–485.

    Google Scholar 

  • Alexis, N. E., Back, T., Zhao, W., Dietrich, W. D., Watson, B. D., and Ginsberg, M. D. (1996). Neurobehavioral consequences of induced spreading depression following photothrombotic middle cerebral artery occlusion. Brain Res. 706:273–282.

    Google Scholar 

  • Astrup, J., Symon, L., Branton, N. M., and Lassen, N. A. (1977). Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8:51–57.

    Google Scholar 

  • Astrup, J., Blennow, T., and Nilsson, B. (1979). Effects of reduced cerebral blood flow on EEG pattern, cerebral extracellular potassium, and energy metabolism in the rat cortex during bicuculline-induced seizure. Brain Res. 177:115–126.

    Google Scholar 

  • Astrup, J., Siesjö, B. K., and Symon, L. (1981). Thresholds in cerebral ischemia — The ischemic penumbra. Stroke 12:723–725.

    Google Scholar 

  • Back, T., Kohno, K., and Hossmann, K.-A. (1994). Cortical negative DC deflections following middle cerebral artery occlusion and KCl-induced spreading depression: Effect on blood flow, tissue oxygenation and electroencephalogram. J. Cereb. Blood Flow Metab. 14:12–19.

    Google Scholar 

  • Back, T., Hoehn-Berlage, M., Kohno, K., and Hossmann, K.-A. (1994b). Diffusion NMR imaging in experimental stroke: Correlation with cerebral metabolites. Stroke 25:494–500.

    Google Scholar 

  • Back, T., Zhao, W., and Ginsberg, M. D. (1995). Three-dimensional image analysis of brain glucose metabolism/blood flow uncoupling and its electrophyiological correlates in the acute ischemic penumbra following middle cerebral artery occlusion. J. Cereb. Blood Flow Metab. 15:566–577.

    Google Scholar 

  • Back, T., Ginsberg, M. D., Dietrich, W. D., and Watson, B. D. (1996). Induction of spreading depression in the ischemic hemisphere following experimental middle cerebral artery occlusion: Effect on infarct morphology. J. Cereb. Blood Flow Metab. 16:202–213.

    Google Scholar 

  • Baron, J. C. (1985). Positron tomography in cerebral ischemia. A review. Neuroradiology 27:509–516.

    Google Scholar 

  • Branston, N. M., Strong, A. J., and Symon, L. (1977). Extracellular potassium activity, evoked potential and tissue blood flow. J. Neurol. Sci. 32:305–321.

    Google Scholar 

  • Branston, N. M., Hope, D. T., and Symon, L. (1979). Barbiturates in focal ischemia of primate cortex: Effects on blood flow distribution, evoked potential and extracellular potassium. Stroke 10:647–653.

    Google Scholar 

  • Branston, N. M., Ladds, A., Symon, L., and Wang, A. D. (1984). Comparison of the effects of ischaemia on early components of the somatosensory evoked potential in brainstem, thalamus, and cerebral cortex. J. Cereb. Blood Flow Metab. 4:68–81.

    Google Scholar 

  • Busch, E., Gyngell, M. L., Eis, M., Hoehn-Berlage, M., and Hossmann, K.-A. (1996). Potassium induced cortical spreading depression during focal ischemia in rats. Contribution to lesion growth assessed by diffusion-weighted NMR and biochemical imaging. J. Cereb. Blood Flow Metab. 16:1090–1099.

    Google Scholar 

  • Chater, N., and Popp, J. (1976). Microsurgical vascular bypass for occlusive cerebrovascular disease: review of 100 cases. Surg. Neurol. 6:115–118.

    Google Scholar 

  • Chen, Q., Chopp, M., Bodzin, G., and Chen, H. (1993). Temperature modulation of cerebral depolarization during focal cerebral ischemia in rats: Correlation with ischemic injury. J. Cereb. Blood Flow Metab. 13:389–394.

    Google Scholar 

  • Chen, H., Chopp, M., Zhang, R. L., Bozin, G., Chen, Q., Rusche, J. R., and Todd, R. F. (1994). Anti-CD11b monoclonal antibody reduces ischemic cell damage after transient focal cerebral ischemia in rat. Ann. Neurol. 35:458–463.

    Google Scholar 

  • Choi, D. W. (1992). Excitotoxic cell death. J. Neurobiol. 23:1261–1276.

    Google Scholar 

  • Csiba, L., Paschen, W., and Mies, G. (1985). Regional changes in tissue pH and glucose content during cortical spreading depression in rat brain. Brain Res. 336:167–170.

    Google Scholar 

  • Dereski, M. O., Chopp, M., Knight, R. A., Rodolosi, L. C., and Garcia, J. H. (1993). The heterogeneous temporal evolution of focal ischemic neuronal damage in the rat. Acta Neuropathol. (Berl.) 85:327–333.

    Google Scholar 

  • Dietrich, W. D., Prado, R., Halley, M., and Watson, B. D. (1993). Microvascular and neuronal consequences of common carotid artery and thrombosis and platelet embolization in rats. J. Neuropathol. Exp. Neurol. 52:351–360.

    Google Scholar 

  • Dirnagl, U., Tanabe, J., and Pulsinelli, W. (1990). Pre-and post-treatment with MK-801 but not pretreatment alone reduces neocortical damage after focal cerebral ischemia in the rat. Brain. Res. 527:62–68.

    Google Scholar 

  • Gage, F. H., Olejniczak, P., and Armstrong, D. M. (1988). Astrocytes are important for sprouting in the septohippocampal circuit. Exp. Neurol. 102:2–13.

    Google Scholar 

  • Garcia, J. H., and Kamijyo, Y. (1974). Cerebral infarction evolution of histopathological changes after occlusion of the middle cerebral artery in primates. Exp. Neurol. 33:408–421.

    Google Scholar 

  • Gehrmann, J., Mies, G., Bonnekoh, P., Banati, R., Iijima, T., Kreutzberg, G. W., and Hossmann, K. A. (1993). Microglial reaction in the rat cerebral cortex induced by cortical spreading depression. Brain Pathol. 3:11–17.

    Google Scholar 

  • Gehrmann, J., Yamashita, K., Back, T., Kreutzberg, G. W., Hossmann, K.-A., and Wiessner, C. (1995). The microglial reaction in focal ischemia: An early and generalized response not attenuable by post-ischemic pharmacological intervention. J. Cereb. Blood Flow Metab. 15(Suppl. 1):S353.

    Google Scholar 

  • Germano, I. M., Pitts, L. H., and Meldrum, B. S. (1987). Kynurenate inhibition of cell excitation decreases stroke size and deficits. Ann. Neurol. 22:730–734.

    Google Scholar 

  • Gill, R., Andine, P., Hillered, L., Persson, L., and Hagberg, H. (1992). The effect of MK-801 on cortical spreading depression in the penumbral zone following focal ischemia in the rat. J. Cereb. Blood Flow Metab. 12:371–37.

    Google Scholar 

  • Ginsberg, M. D., Reivich, M., Giandomenico, M., and Greenberg, J. H. (1977). Local glucose utilization in acute focal cerebral ischemia: local dysmetabolism and diaschisis. Neurology 27:1042–1048.

    Google Scholar 

  • Ginsberg, M. D., Smith, D. W., Wachtel, M. S., Gonzalez-Carvajal, M., and Busto, R. (1986). Simultaneous determination of local cerebral glucose utilization and blood flow by carbon-14 double-label autoradiography: Method of procedure and validation studies in the rat. J. Cereb. Blood Flow Metab. 6:273–285.

    Google Scholar 

  • Ginsberg, M. D., Dietrich, D., and Busto, R. (1987). Coupled forebrain increases of local cerebral glucose utilization and blood flow during physiologic stimulation of a somatosensory pathway in the rat.: Demonstration by double-label autoradiography. Neurology 37:11–19.

    Google Scholar 

  • Ginsberg, M. D., Globus, M. Y. T., Martinez, E., Morimoto, T., Lin, B., Schnippering, H., Alonso, O. F., and Busto, R. (1994). Oxygen radical and excitotoxic processes in brain ischemia and trauma. In Krieglstein, J., and Oberpichler-Schwenk, H. (eds.), Pharmacology of Cerebral Ischemia, Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp. 255–268.

    Google Scholar 

  • Gyngell, M., Back, T., Hoehn-Berlage, M., Kohno, K., and Hossmann, K.-A. (1994). Transient cell depolarization after permanent middle cerebral artery occlusion: An observation by diffusion-weighted MRI and localized 1H-MRS. Magn. Reson. Med. 31:337–341.

    Google Scholar 

  • Gyngell, M. L., Busch, E., Schmitz, B., Kohno, K., Back, T., Hoehn-Berlage, M., and Hossmann, K.-A. (1995). Evolution of acute focal cerebral ischemia in rats observed by localised 1H-MRS, diffusion-weighted MRI, and electrophysiological monitoring. NMR Biomed. 8:206–214.

    Google Scholar 

  • Hammer, B., Parker, W. D., Jr., and Bennett, J. P., Jr. (1993). NMDA receptors increase OH radicals in vivo by using nitric oxide synthase and protein kinase C. NeuroReport 5:72–74.

    Google Scholar 

  • Hansen, A. J., Quistorff, B., and Gjedde, A. (1980). Relationship between local changes in cortical blood flow and extracellular K+ during spreading depression. Acta Physiol. Scand. 109:1–6.

    Google Scholar 

  • Hasegawa, Y., Latour, L. L., Formato, J. E., Sotak, C. H., and Fisher, M. (1995). Spreading waves of a reduced diffusion coefficient of water in normal and ischemic rat brain. J. Cereb. Blood Flow Metab. 15:179–187.

    Google Scholar 

  • Heiss, W.-D. (1983). Flow thresholds of functional and morphological damage of brain tissue. Stroke 14:329–331.

    Google Scholar 

  • Heiss, W.-D., and Rosner, G. (1983). Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann. Neurol. 14:294–301.

    Google Scholar 

  • Heiss, W.-D., Huber, M., Fink, G. R., Herholz, K., Pietrzyk, U., Wagner, R., and Wienhard, K. (1992). Progressive derangement of periinfarct viable tissue in ischemic stroke. J. Cereb. Blood Flow Metab. 12:193–203.

    Google Scholar 

  • Heiss, W.-D., Graf, R., Wienhard, K., Löttgen, J., Saito, R., Fujita, T., Rosner, G., and Wagner, R. (1994). Dynamic penumbra demonstrated by sequential multitracer PET after middle cerebral artery occlusion in cats. J. Cereb. Blood Flow Metab. 14:892–902.

    Google Scholar 

  • Hossmann, K.-A. (1987) Pathophysiology of cerebral infarction. In Vinken, P. J., Bruyn, G. W., and Klawans, H. L. (eds.), Handbook of Clinical Neurology, Elsevier, Amsterdam, pp. 107–153.

    Google Scholar 

  • Hossmann, K.-A. (1994a). Glutamate-mediated injury in focal cerebral ischemia: The excitotoxin hypothesis revised. Brain Pathol. 4:23–36.

    Google Scholar 

  • Hossmann, K.-A. (1994b). Viability thresholds and the penumbra of focal ischemia. Ann. Neurol. 36:557–565.

    Google Scholar 

  • Hossmann, K. A., and Schuier, F. J. (1980). Experimental brain infarcts in cats. I. Pathophysiological observations. Stroke 11:583–592.

    Google Scholar 

  • Hossmann, K. A., Mies, G., Paschen, W., Csiba, L., Bodsch, W., Rapin, J. R., Le Poncin-Lafitte, M., and Takahashi, K. (1985). Multiparametric imaging of blood flow and metabolism after middle cerebral artery occlusion in cats. J. Cereb. Blood Flow Metab. 5:97–107.

    Google Scholar 

  • Iadecola, C., Zhang, F., and Xu, X. (1995a). Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am. J. Physiol. 37:R286–R292.

    Google Scholar 

  • Iadecola, C., Zhang, F., Xu, S., Casey, R., and Ross, M. E. (1995b). Inducible mitric oxide synthase gene expression in brain following cerebral ischemia. J. Cereb. Blood Flow Metab. 15:378–384.

    Google Scholar 

  • Iijima, T., Mies, G., and Hossmann, K. A. (1992). Repeated negative DC deflections in rat cortex following middle cerebral artery occlusion are abolished by MK-801: Effect on volume of ischemic injury. J. Cereb. Blood Flow Metab. 12:727–733.

    Google Scholar 

  • Jacewicz, M., Tanabe, J., and Pulsinelli, W. A. (1992). The CBF threshold and dynamics for focal cerebral infarction in spontaneously hypertensive rats. J. Cereb. Blood Flow Metab. 12:359–370.

    Google Scholar 

  • Jones, T. H., Morawetz, R. B., Crowell, R. M., Marcoux, F. W., Fitzgibbon, S. J., DeGirolami, U., and Ojemann, R. G. (1981). Thresholds of focal cerebral ischemia in awake monkeys. J. Neurosurg. 54:773–782.

    Google Scholar 

  • Kiessling, M., and Gass, P. (1994) Stimulus-transcription coupling in focal cerebral ischemia. Brain Pathol. 4:77–83.

    Google Scholar 

  • Kinouchi, H., Epstein, C. J., Mizui, T., Carlson, E., Chen, S. F., and Chan, P. H. (1991). Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc. Natl. Acad. Sci. USA 88:11158–11162.

    Google Scholar 

  • Kochanek, P. M., and Hallenbeck, J. M. (1992). Polymorphonuclear leukocytes and monocyte/macrophages in the pathogenesis of cerebral ischemia and stroke. Stroke 23:1367–1379.

    Google Scholar 

  • Kocher, M. (1990). Metabolic and hemodynamic activation of postischemic rat brain by cortical spreading depression. J. Cereb. Blood Flow Metab. 10:564–571.

    Google Scholar 

  • Kohno, K., Hoehn-Berlage, M., Mies, G., Back, T., and Hossmann, K.-A. (1995a). Relationship between diffusion-weighted magnetic resonance images, cerebral blood flow and energy state in experimental brain infarction. Magn. Reson. Imag. 13:73–80.

    Google Scholar 

  • Kohno, K., Back, T., Hoehn-Berlage, M., and Hossmann, K.-A. (1995b). A modified rat model of middle cerebral artery thread occlusion under electrophysiological control for magnetic resonance investigations. Magn. Reson. Imag. 13:65–71.

    Google Scholar 

  • Lassen, N. A. (1982). Incomplete cerebral infarction: Focal incomplete ischemic tissue necrosis not leading to emollision. Stroke 13:522–523.

    Google Scholar 

  • Lassen, N. A., and Vorstrup, S. (1984). Ischemic penumbra results in incomplete infarction: Is the sleeping beauty dead? Stroke 15:755.

    Google Scholar 

  • Lauritzen, M., and Diemer, N. H. (1986). Uncoupling of cerebral blood flow and metabolism after single episode of cortical spreading depression in the rat brain. Brain Res. 370:405–408.

    Google Scholar 

  • Leao, A. A. P. (1944). Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 7:359–390.

    Google Scholar 

  • Liu, T. H., Beckman, J. S., Freeman, B. A., Hogan, E. L., and Hsu, C. Y. (1989). Polyethylene glycolconjugated superoxide dismutase and catalase educe ischemic brain injury. Am. J. Physiol. 256:H589–H593.

    Google Scholar 

  • Markgraf, C. G., Kraydieh, S., Prado, R., Watson, B. D., Dietrich, W. D., and Ginsberg, M. D. (1993). Comparative histopathological consequences of photothrombotic occlusion of the distal middle cerebral artery in Sprague-Dawley and Wistar rats. Stroke 24:286–293.

    Google Scholar 

  • Marrannes, R., Willems, R., De-Prins, E., and Wauquier, A. (1988). Evidence for a role of the N-methyl-D-aspartate (NMDA) receptor in cortical spreading depression in the rat. Brain Res. 457(2):226–240.

    Google Scholar 

  • Matsuo, Y., Onodera, H., Shiga, Y., Nakamura, M., Ninomiya, M., Kihara, T., and Kogure, K. (1994). Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat. Stroke 25:1469–1475.

    Google Scholar 

  • Memezawa, H., Smith, M.-L., and Siesjö, B. K. (1992). Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke 23:552–559.

    Google Scholar 

  • Mies, G., Auer, L. M., Ebhardt, G., Traupe, H., and Heiss, W. D. (1983). Flow and neuronal density in tissue surrounding chronic infarction. Stroke 14:22–27.

    Google Scholar 

  • Mies, G., Ishimaru, S., Xie, Y., Seo, K., and Hossmann, K.-A. (1991). Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebal artery occlusion in rat. J. Cereb. Blood Flow Metab. 11:753–761.

    Google Scholar 

  • Mies, G., Kohno, K., and Hosmann, K.-A. (1993a). MK-801, a glutamate antagonist, lowers flow threshold for inhibition of protein synthesis after middle cerebral occlusion of rat. Neurosci. Lett. 155:65–68.

    Google Scholar 

  • Mies, G., Iijima, T., and Hossmann, K. A. (1993b). Correlation between peri-infarct DC shifts and ischemic neuronal damage in cerebral cortex of rat. NeuroReport 4:709–711.

    Google Scholar 

  • Mies, G., Kohno, K., and Hossmann, K.-A. (1994). Prevention of peri-infarct direct current shifts with glutamate antagonist NBQX following occlusion of the middle cerebral artery in the rat. J. Cereb. Blood Flow Metab. 14:802–807.

    Google Scholar 

  • Minematsu, K., Li, L., Sotak, C. H., Davis, M. A., and Fisher, M. (1992). Reversible focal ischemic injury demonstrated by diffusion-weighted magnetic resonance imaging in rats. Stroke 23:1304–1311.

    Google Scholar 

  • Minematsu, K., Fisher, M., Li, L., and Sotak, C. H. (1993). Diffusion and perfusion magnetic resonance imaging studies to evaluate a noncompetitive N-methyl-D-apartate antagonist and reperfusion in experimental stroke in rats. Stroke 24:2074–2081.

    Google Scholar 

  • Mintorovitch, J., Moseley, M. E., Chileuitt, L., Shimizu, H., Cohen, Y., and Weinstein, P. R. (1991). Comparison of diffusion-and T2-weighted MRI for the early detection of cerebral ischemia and reperfusion in rats. Magn. Res. Med. 18:39–50.

    Google Scholar 

  • Morawetz, R. B., DeGirolami, U., Ojemann, R. G., Marcoux, F. W., and Crowell, R. M. (1978). Cerebral blood flow determined by hydrogen clearance during middle cerebral artery occlusion in unanesthetized monkeys. Stroke 9:143–149.

    Google Scholar 

  • Morimoto, T., Globus, M. Y. T., Busto, R., Martinez, E., and Ginsberg, M. D. (1996). Simultaneous measurement of salicylate hydroxylation and glutamate release in the penumbral cortex following transient middle cerebral artery occlusion in rats. J. Cereb. Blood Flow Metab. 16:92–99.

    Google Scholar 

  • Moseley, M. E., Cohen, Y., Mintorovitch, J., Chileuitt, L., Shimizu, H., Kucharczyk, J., Wendland, M. F., and Weinstein, P. R. (1990). Early detection of regional cerebral ischemia in cats: Comparison of diffusion-and T2-weighted MRI and spectroscopy. Magn. Reson. Med. 14:330–346.

    Google Scholar 

  • Nedergaard, M. (1987). Neuronal injury in the infarct border: A neuropathological study in the rat. Acta Neuropathol. 73:267–274.

    Google Scholar 

  • Nedergaard, M. (1988). Mechanisms of brain damage in focal cerebral ischemia. Acta Neurol. Scand. 77:3–23.

    Google Scholar 

  • Nedergaard, M., and Astrup, J. (1986). Infarct rim: Effect of hyperglycemia on direct current potential and [14C]2-deoxyglucose phosphorylation. J. Cereb. Blood Flow Metab. 6:607–615.

    Google Scholar 

  • Nedergaard, M., Astrup, J., and Klinken, L. (1984). Cell density and cortex thickness in the border zone surrounding old infarct in the human brain. Stroke 15:1033–1039.

    Google Scholar 

  • Nedergaard, M., and Hansen, A. J. (1988). Spreading depression is not associated with neuronal injury in the normal brain. Brain Res. 449:395–398.

    Google Scholar 

  • Nedergaard, M., Vorstrup, S., and Astrup, J. (1986). Cell density in the border zone around old small human brain infarcts. Stroke 17:1129–1137.

    Google Scholar 

  • Oh, S. M., and Betz, A. L. (1991). Interaction between free radicals and excitatory amino acids in the formation of ischemic brain edema in rats. Stroke 22:915–921.

    Google Scholar 

  • Olsen, T. S., Larsen, B., Herning, M., Skriver, E. B., and Lassen, N. A. (1983). Blood flow and vascular reactivity in collaterally perfused brain tissue. Stroke 14:332–341.

    Google Scholar 

  • Opitz, E., and Schneider, M. (1950). Über die Sauerstoffversorgung des Gehirns und den Mechanismus der Mangelwirkungen. Ergebn. Physiol. 46:126–260.

    Google Scholar 

  • Ozyurt, E., Graham, D. I., Woodruff, G. N., and McCulloch, J. (1988). Protective effect of the glutamate anatagonist MK-801 in focal cerebral ischemia in the cat. J. Cereb. Blood Flow Metab. 8:138–143.

    Google Scholar 

  • Park, C. K., Nehls, D. G., Graham, D. I., Teasdale, G. M., and McCulloch, J. (1988). The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann. Neurol. 24:543–551.

    Google Scholar 

  • Park, C. K., Nehls, D. G., Teasdale, G. M., and McCulloch, J. (1989). Effect of the NMDA antagonist MK-801 on local cerebral blood flow in focal cerebral ischemia in the rat. J. Cereb. Blood Flow Metab. 9(5):617–622.

    Google Scholar 

  • Peters, O., Back, T., Lindauer, U., Busch, C., Megow, D., Dreier, J., and Dirnagl, U. (1998). Increased formation of reactive oxygen species following permanent and reversible middle cerebral artery occlusion in the rat. J. Cereb. Blood Flow Metabl. 18:196–205.

    Google Scholar 

  • Rothman, S. (1984). Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J. Neurosci. 4:1884–1891.

    Google Scholar 

  • Saitoh, R., Graf, R., Hicbel, K., Fujita, T., Rosner, G., and Weiss, W. D. (1997). Reduction of infarct volume by halothane: Effect on cerebral blood flow or perifocal spreading depression-like depolarizations. J. Cereb. Blood Flow Metab. 17:857–864.

    Google Scholar 

  • Shimada, N., Graf, R., Rosner, G., Wakayama, A., George, C. P., and Heiss, W.-D. (1989). Ischemic flow threshold for extracellular glutamate increase in cat cortex. J. Cereb. Blood Flow Metab. 9:603–606.

    Google Scholar 

  • Shinohara, M., Dollinger, B., Brown, G., Rapaport, S., and Sokoloff, L. (1979). Cerebral glucose utilization: Local changes during and after recovery from spreading cortical depression. Science 203:188–190.

    Google Scholar 

  • Siesjö, B. K., and Bengtsson, F. (1989). Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: A unifying hypothesis. J. Cereb. Blood Flow Metab. 9:127–140.

    Google Scholar 

  • Sokoloff, L. (1981). Localization of functional activity in the central nevous system by measurement of glucose utilization with radioactive deoxyglucose. J. Cereb. Blood Flow Metab. 1:7–36.

    Google Scholar 

  • Spielmeyer, W. (1922). Histopathologie des Nervensystems, Springer Verlag, Berlin, pp. 74–79.

    Google Scholar 

  • Strong, A. J., Venables, G. S., and Gibson, G. (1983a). The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat. 1. Topography of changes in blood flow, potassium ion activity, and EEG. J. Cereb. Blood Flow Metab. 3:86–96.

    Google Scholar 

  • Strong, A. J., Tomlinson, B. E., Venables, G. S., Gibson, G., and Hardy, J. A. (1983b). The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat: 2. Studies of histopathology, water content, and in vivo neurotransmitter uptake. J. Cereb. Blood Flow Metab. 3:97–108.

    Google Scholar 

  • Strong, A. J., Gibson, G., Miller, S. A., and Venables, G. S. (1988). Changes in vascular and metabolic reactivity as indices of ischaemia in the penumbra. J. Cereb. Blood Flow Metab. 8:79–88.

    Google Scholar 

  • Takagi, K., Ginsberg, M. D., Globus, M. Y. T., Dietrich, W. D., Martinez, E., Kraydieh, S., and Busto, R. (1993). Changes in amino acid neurotransmitters and cerebral blood flow in the ischemic penumbral region following middle cerebral artery occlusion in the rat: Correlation with histopathology. J. Cereb. Blood Flow Metab. 13:375–585.

    Google Scholar 

  • Takeda, Y., Jacewicz, M., Takeda, Y., Nowak, T. S., and Pulsinelli, W. A. (1993). DC-potential and energy metabolites in the focal ischemia. J. Cereb. Blood Flow Metab. 13(Suppl. 1):S450.

    Google Scholar 

  • Tamura, A., Graham, D. I., McCulloch, J., and Teasdale, G. M. (1981a). Focal cerebral ischemia in the rat. I. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J. Cereb. Blood Flow Metab. 1:53–60.

    Google Scholar 

  • Tamura, A., Graham, D. I., McCulloch, J., and Teasdale, G. M. (1981b). Focal cerebral ischemia in the rat. II. Regional cerebral blood flow determined by [14C]iodoantipyrine autoradiography following middle cerebral artery occlusion. J. Cereb. Blood Flow Metab. 1:61–69.

    Google Scholar 

  • Tyson, G. W., Teasdale, G. M., Graham, D. I., and McCulloch, J. (1984). Focal cerebral ischemia in the rat: Topography of hemodynamic and histopathological changes. Ann. Neurol. 15:559–567.

    Google Scholar 

  • Uemura, Y., Kowall, N. W., and Moskowitz, M. A. (1991). Focal ischemia in in rats causes time-dependent expression of c-fos protein immunoreactivity in widespread regions of ispilateral cortex. Brain Res. 552:99–105.

    Google Scholar 

  • von Kummer, R., Holle, R., Rosin, L., Forsting, M., and Hacke, W. (1995). Does arterial recanalization improve outcome in carotid territory stroke? Stroke 26:581–587.

    Google Scholar 

  • Walz, W., and Hertz, L. (1983). Functional interactions between neurons and astrocytes. II. Potassium homeostasis at the cellular level. Prog. Neurobiol. 20:133–183.

    Google Scholar 

  • Warach, S., Chien, D., Li, W., Ronthal, M., and Edelmann, R. R. (1992). Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 42:1717–1723.

    Google Scholar 

  • Watanabe, T., Yuki, S., Egawa, M., and Nishi, H. (1994). Protective effects of MCI-186 on cerebral ischemia: Possible involvement of free radical scavenging and antioxidant actions. J. Pharmacol. Exp. Ther. 268:1597–1604.

    Google Scholar 

  • Watson, B. D., Busto, R., Goldberg, W. J., Santiso, M., Yoshida, S., and Ginsberg, M. D. (1984). Lipid peroxidation in vivo induced by reversible global ischemia in rat brain. J. Neurochem. 42:268–274.

    Google Scholar 

  • Welsh, F. A., Moyer, D. J., and Harris, V. A. (1992). Regional expression of heat shock protein 70 mRNA and c-fos mRNA following focal ischemia in rat brain. J. Cereb. Blood Flow Metab. 12:204–212.

    Google Scholar 

  • Wolf, T., Lindauer, U., Rewter, U., Back, T., and Dirnagl, U. (1997). Noninvasive near-infrared spectroscopy monitoring of regional cerebral blood oxygenation changes during perinfarct depolarizations in focal cerebral ischemia in the rat. J. Cereb. Blood Flow Metab. 17:950–954.

    Google Scholar 

  • Yamashita, K., Vogel, P., Fritze, K., Back, T., Hossmann, K.-A., and Wiessner, C. (1996). Monitoring the temporal and spatial activation pattern of astrocytes in focal cerebral ischemia using in situ hybridization to GFAP mRNA: Comparison with sgp-2 and hsp70 mRNA and the effect of glutamate receptor antagonists. Brain Res. 735:285–297.

    Google Scholar 

  • Yao, H., Markgraf, C. G., Dietrich, W. D., Prado, R., Watson, B. D., and Ginsberg, M. D. (1994). Glutamate antagonist MK-801 attenuates incomplete but not complete infarction in thrombotic distal middle cerebral artery occlusion in Wistar rats. Brain Res. 642:117–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Back, T. Pathophysiology of the Ischemic Penumbra—Revision of a Concept. Cell Mol Neurobiol 18, 621–638 (1998). https://doi.org/10.1023/A:1020629818207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020629818207

Navigation