Skip to main content
Log in

Global control of sugar metabolism: a Gram-positive solution

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Bacteria utilise carbon sources in a strictly controlled hierarchical manner for which they have developed global control mechanisms that govern and coordinate carbon source-specific regulation. This is achieved via carbon catabolite repression (CCR), which is the result of global transcriptional control and inducer exclusion. A common mechanism for transcriptional control has evolved within the group of low-GC Gram-positive bacteria, including lactic acid bacteria. The seryl-phosphorylated form of the phosphotransferase HPr (HPr-ser-P) mediates CCR in concert with the pleiotropic regulator CcpA (catabolite control protein) by repressing or activating catabolite-controlled genes. HPr-ser-P can concomitantly trigger inducer exclusion by inhibition of carbohydrate-specific permeases. Histidyl-phosphorylated HPr (HPr-his P) is required for the transport of many carbon sources by the phosphotransferase system (PTS). In addition, HPr-his P controls carbohydrate-specific regulators and catabolic enzymes by phosphorylation. Thus, the ratio of HPr-his P/HPr-ser-P determines utilisation of a particular carbon source. This ratio is mainly adjusted by the bifunctional HPr kinase/phosphatase (HPrK/P), which itself is controlled by the metabolic state of the cell. As a result, the information about the metabolic state of the cell is combined with signals scoring the availability of carbon sources to fine-tune the expression of catabolic genes with the goal to optimise growth rate in any given mixture of nutrients. This review summarises the current understanding of carbon catabolite regulation in low-GC Gram-positive bacteria with special emphasis on lactic acid bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD& Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11: 731–753.

    Google Scholar 

  • Brochu D& Vadeboncoeur C (1999) The HPr(Ser) kinase of Streptococcus salivarius: purification, properties, and cloning of the hprK gene. J. Bacteriol. 181: 709–717.

    Google Scholar 

  • Brückner R& Titgemeyer F (2002) Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol. Lett. 209: 141–148.

    Google Scholar 

  • Busby S& Ebright RH (1999) Transcription activation by catabolite activator protein (CAP). J. Mol. Biol. 293: 199–213.

    Google Scholar 

  • Charrier V, Buckley E, Parsonage D, Galinier A, Darbon E, Jaquinod M, Forest E, Deutscher J& Claiborne A (1997) Cloning and sequencing of two enterococcal glpK genes and regulation of the encoded glycerol kinases by phosphoenolpyruvatedependent, phosphotransferase system-catalyzed phosphorylation of a single histidyl residue. J. Biol. Chem. 272: 14166–14174.

    Google Scholar 

  • Chaillou S, Postma PW& Pouwels PH (2001) Contribution of the phosphoenolpyruvate: mannose phosphotransferase system to carbon catabolite repression in Lactobacillus pentosus. Microbiology 147: 671–679.

    Google Scholar 

  • Chauvaux S, Paulsen IT& Saier MH Jr. (1998) CcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis. J. Bacteriol. 180: 491–497.

    Google Scholar 

  • Colland F, Barth M, Hengge-Aronis R& Kolb A (2000) Sigma factor selectivity of Escherichia coli RNA polymerase: role for CRP, IHF and lrp transcription factors. EMBO J. 19: 3028–3037.

    Google Scholar 

  • Deutscher J, Reizer J, Fischer C, Galinier A, Saier MH, Jr.& Steinmetz M (1994) Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. J. Bacteriol. 176: 3336–3344.

    Google Scholar 

  • Deutscher J, Küster E, Bergstedt U, Charrier V& Hillen W (1995) Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol. Microbiol. 15: 1049–1053.

    Google Scholar 

  • Djordjevic GM, Tchieu JH& Saier MH, Jr. (2001) Genes involved in control of galactose uptake in Lactobacillus brevis and reconstitution of the regulatory system in Bacillus subtilis. J. Bacteriol. 183: 3224–3236.

    Google Scholar 

  • Dossonnet V, Monedero V, Zagorec M, Galinier A, Pérez-Martínez G& Deutscher J (2000) Phosphorylation of HPr by the bifunctional HPr Kinase/P-ser-HPr phosphatase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion. J. Bacteriol. 182: 2582–2590.

    Google Scholar 

  • Faires N, Tobisch S, Bachem S, Martin-Verstraete I, Hecker M& Stulke J (1999) The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis. J. Mol. Microbiol. Biotechnol. 1: 141–148.

    Google Scholar 

  • Fieulaine S, Morera S, Poncet S, Monedero V, Gueguen-Chaignon V, Galinier A, Janin J, Deutscher J& Nessler S (2001) X-ray structure of HPr kinase: a bacterial protein kinase with a P-loop nucleotide-binding domain. EMBO J. 20: 3917–3927.

    Google Scholar 

  • Fisher SH, Strauch MA, Atkinson MR& Wray LV, Jr. (1994) Modulation of Bacillus subtilis catabolite repression by transition state regulatory protein AbrB. J. Bacteriol. 176: 1903–1912.

    Google Scholar 

  • Galinier A, Haiech J, Kilhoffer MC, Jaquinod M, Stülke J, Deutscher J& Martin-Verstraete I (1997) The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. Proc. Natl. Acad. Sci. U.S.A. 94: 8439–8444.

    Google Scholar 

  • Galinier A, Kravanja M, Engelmann R, Hengstenberg W, Kilhoffer MC, Deutscher J& Haiech J (1998) New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. Proc. Natl. Acad. Sci. U.S.A. 95: 1823–1828.

    Google Scholar 

  • Garrity LF, Schiel SL, Merrill R, Reizer J, Saier MH, Jr.& Ordal GW (1998) Unique regulation of carbohydrate chemotaxis in Bacillus subtilis by the phosphoenolpyruvate-dependent phosphotransferase system and the methyl-accepting chemotaxis protein McpC. J. Bacteriol. 180: 4475–4480.

    Google Scholar 

  • Görke B& Rak B (1999) Catabolite control of Escherichia coli regulatory protein BglG activity by antagonistically acting phosphorylations. EMBO J. 18: 3370–3379.

    Google Scholar 

  • Gosalbes MJ, Monedero V& Pérez-Martínez G (1999) Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei. J. Bacteriol. 181: 3928–3934.

    Google Scholar 

  • Gosalbes MJ, Esteban CD& Pérez-Martínez G (2002) In vivo effect of mutations in the antiterminator LacT in Lactobacillus casei. Microbiology 148: 695–702.

    Google Scholar 

  • Gösseringer R, Küster E, Galinier A, Deutscher J& Hillen W (1997) Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals. J. Mol. Biol. 266: 665–676.

    Google Scholar 

  • Guédon E, Renault P, Ehrlich SD& Delorme C (2001) Transcriptional pattern of genes coding for the proteolytic system of Lactococcus lactis and evidence for coordinated regulation of key enzymes by peptide supply. J. Bacteriol. 183: 3614–3622.

    Google Scholar 

  • Gunnewijk MG& Poolman B (2000) Phosphorylation state of HPr determines the level of expression and the extent of phosphorylation of the lactose transport protein of Streptococcus thermophilus. J. Biol. Chem. 275: 34073–34079.

    Google Scholar 

  • Gunnewijk Mg, van den Bogaard PT, Veenhoff LM, Heuberger EH, de Vos WM, Kleerebezem M, Kuipers OP& Poolman B (2001) Hierarchical control versus autoregulation of carbohydrate utilization in bacteria. J. Mol. Microbiol. Biotechnol. 3: 401–413.

    Google Scholar 

  • Henkin TM (1996) The role of CcpA transcriptional regulator in carbon metabolism in Bacillus subtilis. FEMS Microbiol. Lett. 135: 9–15.

    Google Scholar 

  • Henkin TM, Grundy FJ, Nicholson WL& Chambliss GH (1991) Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli Lacl and GalR repressors. Mol. Microbiol. 5: 575–584.

    Google Scholar 

  • Hogema BM, Arents JC, Bader R, Eijkemans K, Yoshida H, Takahashi H, Aiba H& Postma PW (1998) Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc. Mol. Microbiol. 30: 487–498.

    Google Scholar 

  • Hoskins J, Alborn WE, Jr., Arnold J, Blaszczak LC, Burgett S& DeHoff BS et al. (2001) Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183: 5709–5717.

    Google Scholar 

  • Jones BE, Dossonnet V, Küster E, Hillen W, Deutscher J& Klevit RE (1997) Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. J. Biol. Chem. 272: 26530–26535.

    Google Scholar 

  • Jourlin-Castelli C, Mani N, Nakano Mm& Sonenshein AL (2000) CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. J. Mol. Biol. 295: 865–878.

    Google Scholar 

  • Kim JH, Voskuil MI& Chambliss GH (1998) NADP, corepressor for the Bacillus catabolite control protein CcpA. Proc. Natl. Acad. Sci. U.S.A. 95: 9590–9595.

    Google Scholar 

  • Kravanja M, Engelmann R, Dossonnet V, Blüggel M, Meyer HE, Frank R, Galinier A, Deutscher J, Schnell N& Hengstenberg W (1999) The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase. Mol. Microbiol. 31: 59–66.

    Google Scholar 

  • Kunji ER, Mierau I, Hagting A, Poolman B& Konings WN (1996) The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek 70: 187–221.

    Google Scholar 

  • Küster-Schöck E, Wagner A, Völker U& Hillen W (1999) Mutations in catabolite control protein CcpA showing glucoseindependent regulation in Bacillus megaterium. J. Bacteriol. 181: 7634–7638.

    Google Scholar 

  • Leboeuf C, Auffray Y& Hartke A (2000a) Cloning, sequencing and characterization of the ccpA gene from Enterococcus faecalis. Int. J. Food Microbiol. 55: 109–113.

    Google Scholar 

  • Leboeuf C, Leblanc L, Auffray Y& Hartke A (2000b) Characterization of the ccpA gene of Enterococcus faecalis: identification of starvation-inducible proteins regulated by ccpA. J. Bacteriol. 182: 5799–5806.

    Google Scholar 

  • Lokman BC, Heerikhuisen M, Leer RJ, van den Broek A, Borsboom Y, Chaillou S, Postma PW& Pouwels PH (1997) Regulation of expression of the Lactobacillus pentosus xylAB operon. J. Bacteriol. 179: 5391–5397.

    Google Scholar 

  • Ludwig H, Homuth G, Schmalisch M, Dyka FM, Hecker M& Stülke J (2001) Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Mol. Microbiol. 41: 409–422.

    Google Scholar 

  • Luesink EJ, van Herpen RE, Grossiord BP, Kuipers OP& de Vos WM (1998) Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol. Microbiol. 30: 789–798.

    Google Scholar 

  • Luesink EJ, Beumer CM, Kuipers OP& De Vos WM (1999) Molecular characterization of the Lactococcus lactis ptsHI operon and analysis of the regulatory role of HPr. J. Bacteriol. 181: 764–771.

    Google Scholar 

  • Lux R, Jahreis K, Bettenbrock K, Parkinson JS& Lengeler JW (1995) Coupling the phosphotransferase system and the methylaccepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 92: 11583–11587.

    Google Scholar 

  • Mahr K, Hillen W& Titgemeyer F (2000) Carbon catabolite repression in Lactobacillus pentosus: analysis of the ccpA region. Appl. Environ. Microbiol. 66: 277–283.

    Google Scholar 

  • Mahr K, Esteban CD, Hillen W, Titgemeyer F&Pérez-Martínez G (2002) Cross communication between components of carbon catabolite repression of Lactobacillus casei and Bacillus megaterium. J. Mol. Microbiol. Biotechnol.: in press.

  • Marasco R, Muscariello L, Varcamonti M, De Felice M& Sacco M (1998) Expression of the bglH gene of Lactobacillus plantarum is controlled by carbon catabolite repression. J. Bacteriol. 180: 3400–3404.

    Google Scholar 

  • Miwa Y, Nagura K, Eguchi S, Fukuda H, Deutscher J& Fujita Y (1997) Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements. Mol. Microbiol. 23: 1203–1213.

    Google Scholar 

  • Miwa Y, Nakata A, Ogiwara A, Yamamoto M& Fujita Y (2000) Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res. 28: 1206–1210.

    Google Scholar 

  • Monedero V, Gosalbes MJ& Pérez-Martínez G (1997) Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA. J. Bacteriol 179: 6657–6664.

    Google Scholar 

  • Monedero V, Poncet S, Mijakovic I, Fieulaine S, Dossonnet V, Martin-Verstraete I, Nessler S& Deutscher J (2001a) Mutations lowering the phosphatase activity of HPr kinase/phosphatase switch off carbon metabolism. EMBO J. 20: 3928–3937.

    Google Scholar 

  • Monedero V, Kuipers OP, Jamet E& Deutscher J (2001b) Regulatory functions of serine-46-phosphorylated HPr in Lactococcus lactis. J. Bacteriol. 183: 3391–3398.

    Google Scholar 

  • Morel F, Frot-Coutaz J, Aubel D, Portalier R& Atlan D (1999) Characterization of a prolidase from Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397 with an unusual regulation of biosynthesis. Microbiology 145: 437–446.

    Google Scholar 

  • Morel F, Lamarque M, Bissardon I, Atlan D& Galinier A (2001) Autoregulation of the biosynthesis of the CcpA-like protein, PepR1, in Lactobacillus delbrueckii subsp bulgaricus. J. Mol. Microbiol. Biotechnol. 3: 63–66.

    Google Scholar 

  • Moreno MS, Schneider BL, Maile RR, Weyler W& Saier MH, Jr. (2001) Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by wholegenome analyses. Mol. Microbiol. 39: 1366–1381.

    Google Scholar 

  • Plumbridge J (2001) Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently). J. Mol. Microbiol. Biotechnol. 3: 371–380.

    Google Scholar 

  • Posthuma CC, Bader R, Engelmann R, Postma PW, Hengstenberg W& Pouwels PH (2002) Expression of the xylulose 5-phosphate phosphoketolase gene, xpkA, from Lactobacillus pentosus MD363 is induced by sugars that are fermented via the phosphoketolase pathway and is repressed by glucose mediated by CcpA and the mannose phosphoenolpyruvate phosphotransferase system. Appl. Environ. Microbiol 68: 831–837.

    Google Scholar 

  • Postma PW, Lengeler JW& Jacobson GR (1993) Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57: 543–594.

    Google Scholar 

  • Presecan-Siedel E, Galinier A, Longin R, Deutscher J, Danchin A, Glaser P& Martin-Verstraete I (1999) Catabolite regulation of the pta gene as part of carbon flow pathways inBacillus subtilis. J. Bacteriol. 181: 6889–6897.

    Google Scholar 

  • Reizer J, Novotny MJ, Panos C& Saier MH Jr. (1983) Mechanism of inducer expulsion in Streptococcus pyogenes: a two-step process activated by ATP. J. Bacteriol 156: 354–361.

    Google Scholar 

  • Reizer J, Hoischen C, Titgemeyer F, Rivolta C, Rabus R, Stülke J, Karamata D, Saier MH Jr.& Hillen W (1998) A novel protein kinase that controls carbon catabolite repression in bacteria. Mol. Microbiol. 27: 1157–1169.

    Google Scholar 

  • Reizer J, Bachem S, Reizer A, Arnaud M, Saier MH Jr.& Stülke J (1999) Novel phosphotransferase system genes revealed by genome analysis-the complete complement of PTS proteins encoded within the genome of Bacillus subtilis. Microbiology 145: 3419–3429.

    Google Scholar 

  • Roseman S, Pettigrew DW& Remington SJ (1993) Structure of the regulatory complex of Escherichia coli IIIGlc with glycerol kinase. Science 259: 673–677.

    Google Scholar 

  • Saier MH Jr. (1989) Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Microbiol. Rev. 53: 109–120.

    Google Scholar 

  • Saier MH Jr., Chauvaux S, Cook GM, Deutscher J, Paulsen IT, Reizer J& Ye JJ (1996) Catabolite repression and inducer control in Gram-positive bacteria. Microbiology 142: 217–230.

    Google Scholar 

  • Saier MH Jr.& Ramseier TM (1996) The catabolite repressor/activator (Cra) protein of enteric bacteria. J. Bacteriol 178: 3411–3417.

    Google Scholar 

  • Schick J, Weber B, Klein JR& Henrich B (1999) PepR1, a CcpAlike transcription regulator of Lactobacillus delbrueckii subsp. lactis. Microbiology 145: 3147–3154.

    Google Scholar 

  • Seok YJ, Sun J, Kaback HR& Peterkofsky A (1997) Topology of allosteric regulation of lactose permease. Proc. Natl. Acad. Sci. U.S.A. 94: 13515–13519.

    Google Scholar 

  • Seok YJ, Koo BM, Sondej M& Peterkofsky A (2001) Regulation of E. coli glycogen phosphorylase activity by HPr. J. Mol. Microbiol. Biotechnol. 3(3): 385–393.

    Google Scholar 

  • Sondej M, Sun J, Seok YJ, Kaback HR& Peterkofsky A (1999) Deduction of consensus binding sequences on proteins that bind IIAGlc of the phosphoenolpyruvate:sugar phosphotransferase system by cysteine scanning mutagenesis of Escherichia coli lactose permease. Proc. Natl. Acad. Sci. U.S.A. 96: 3525–3530.

    Google Scholar 

  • Soutourina O, Kolb A, Krin E, Laurent-Winter C, Rimsky S, Danchin A& Bertin P (1999) Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J. Bacteriol. 181: 7500–7508.

    Google Scholar 

  • Stucky K, Schick J, Klein JR, Henrich B& Plapp R (1996) Characterization of pepR1, a gene coding for a potential transcriptional regulator of Lactobacillus delbrueckii subsp. lactis DSM7290. FEMS Microbiol. Lett. 136: 63–69.

    Google Scholar 

  • Stülke J, Arnaud M, Rapoport G& Martin-Verstraete I (1998) PRD-a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol. Microbiol. 28: 865–874.

    Google Scholar 

  • Stülke J& Hillen W (2000) Regulation of carbon catabolism in Bacillus species. Annu. Rev. Microbiol. 54: 849–880.

    Google Scholar 

  • Titgemeyer F, Mason RE& Saier MH, Jr. (1994) Regulation of the raffinose permease of Escherichia coli by the glucose-specific enzyme IIA of the phosphoenolpyruvate:sugar phosphotransferase system. J. Bacteriol 176: 543–546.

    Google Scholar 

  • Tobisch S, Zühlke D, Bernhardt J, Stülke J& Hecker M (1999) Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. J. Bacteriol. 181: 6996–7004.

    Google Scholar 

  • Turinsky AJ, Grundy FJ, Kim JH, Chambliss GH& Henkin TM (1998) Transcriptional activation of theBacillus subtilis ackA gene requires sequences upstream of the promoter. J. Bacteriol. 180: 5961–5967.

    Google Scholar 

  • Turinsky AJ, Moir-Blais TR, Grundy FJ& Henkin TM (2000) Bacillus subtilis ccpA gene mutants specifically defective in activation of acetoin biosynthesis. J. Bacteriol. 182: 5611–5614.

    Google Scholar 

  • Ueguchi C, Misonou N& Mizuno T (2001) Negative control of rpoS expression by phosphoenolpyruvate:carbohydrate phosphotransferase system in Escherichia coli. J. Bacteriol. 183: 520–527.

    Google Scholar 

  • van den Bogaard PT, Kleerebezem M, Kuipers OP& de Vos WM (2000) Control of lactose transport, beta-galactosidase activity, and glycolysis by CcpA in Streptococcus thermophilus: evidence for carbon catabolite repression by a non-phosphoenolpyruvatedependent phosphotransferase system sugar. J. Bacteriol. 182: 5982–5989.

    Google Scholar 

  • Viana R, Monedero V, Dossonnet V, Vadeboncoeur C, Pérez-Martínez G& Deutscher J (2000) Enzyme I and HPr from Lactobacillus casei: their role in sugar transport, carbon catabolite repression and inducer exclusion. Mol. Microbiol. 36: 570–584.

    Google Scholar 

  • Wray LV Jr, Pettengill FK& Fisher SH (1994) Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site. J. Bacteriol. 176: 1894–1902.

    Google Scholar 

  • Ye JJ, Reizer J, Cui X& Saier MH Jr. (1994a) ATP-dependent phosphorylation of serine-46 in the phosphocarrier protein HPr regulates lactose/H+ symport in Lactobacillus brevis. Proc. Natl. Acad. Sci. U.S.A. 91(8): 3102–3106.

    Google Scholar 

  • Ye JJ, Reizer J, Cui X& Saier MH Jr. (1994b) Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr. J. Biol. Chem. 269(16): 11837–11844.

    Google Scholar 

  • Yebra MJ, Veyrat A, Santos MA& Pérez-Martínez G (2000) Genetics of L-sorbose transport and metabolism in Lactobacillus casei. J. Bacteriol 182(1): 155–163.

    Google Scholar 

  • Yoshida K, Kobayashi K, Miwa Y, Kang CM, Matsunaga M, Yamaguchi H, Tojo S, Yamamoto M, Nishi R, Ogasawara N, Nakayama T& Fujita Y (2001) Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res. 29(3): 683–692.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Titgemeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Titgemeyer, F., Hillen, W. Global control of sugar metabolism: a Gram-positive solution. Antonie Van Leeuwenhoek 82, 59–71 (2002). https://doi.org/10.1023/A:1020628909429

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020628909429

Navigation