Skip to main content
Log in

Lipid Peroxides in the Free Radical Pathophysiology of Brain Diseases

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. Polyunsaturated fatty acids are essential for normal neural cell membrane functioning because many membrane properties, such as fluidity and permeability, are closely related to the presence of unsaturated and polyunsaturated side chains. Lipid peroxidation results in loss of membrane polyunsaturated fatty acids and oxidized phospholipids as polar species contributing to increased membrane rigidity.

2. Polyunsaturated fatty acids are released from membrane phospholipids by a number of enzymic mechanisms involving the receptor-mediated stimulation of phospholipase A2 and phospholipase C/diacylglycerol lipase pathways.

3. The overstimulation of excitatory amino acid (EAA) receptors stimulates the activities of lipases and phospholipases, and this stimulation produces changes in membrane phospholipid composition, permeability, and fluidity, thus decreasing the integrity of plasma membranes.

4. Alterations in properties of plasma membranes may be responsible for the degeneration of neurons seen in neurodegenerative diseases. Two major processes may be involved in neuronal injury caused by the overstimulation of EAA receptors. One is a large Ca2+ influx and the other is an accumulation of free radicals and lipid peroxides as a result of neural membrane phospholipid degradation. It is suggested that calcium and free radicals act in concert to induce neuronal injury in acute trauma (ischemia and spinal cord injury) and in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abe, K., Kogure, K., Arai, H., and Nakano, M. (1985). Ascorbate induced lipid peroxidation results in loss of receptor binding in Tris, but not in phosphate, buffer. Implications for the involvement of metal ions. Biochem. Int. 11:341–348.

    Google Scholar 

  • Abe, K., Kogure, K., Yamamoto, H., Imazawa, M., and Miyamoto, K. (1987). Mechanism of arachidonic acid liberation during ischemia in gerbil cerebral cortex. J. Neurochem. 48:503–509.

    Google Scholar 

  • Baba, A., Lee, E., Ohta, A., Tatsuno, T., and Iwata, H. (1981). Activation of adenylate cyclase of rat brain by lipid peroxidation. J. Biol. Chem. 256:3679–3684.

    Google Scholar 

  • Bazan, N. G. (1989). Arachidonic acid in the modulation of excitable membrane function and at the onset of brain damage. In Barkai, A. I., and Bazan, N. G. (eds.), Annals of the New York Academy of Sciences, Vol. 559: Arachidonic Acid Metabolism in the Nervous System, Physiological and Pathological Significance, New York Academy of Science, New York, pp. 1–16.

    Google Scholar 

  • Beal, M. F. (1992). Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann. Neurol. 31:119–130.

    Google Scholar 

  • Ben-Arie, N., Gileady, C., and Schramm, M. (1988). Interaction of the γ-adrenergic receptor with Gs following delipidation. Specific lipid requirements for Gs activation and GTPase function. Eur. J. Biochem. 176:649–654.

    Google Scholar 

  • Bondy, S. C. (1995). The relation of oxidative stress and hyperexcitation to neurological disease. Proc. Soc. Exp. Biol. Med. 208:337–345.

    Google Scholar 

  • Brooksbank, B. W. L., and Balazs, R. (1984). Superoxide dismutase, glutathione peroxidase and lipoper-oxidation in Down's syndrome fetal brain. Dev. Brain Res. 16:37–44.

    Google Scholar 

  • Brooksbank, B. W. L., and Martinez, M. (1989). Lipid abnormalities in the brain in adult Down's syndrome and Alzheimer's disease. Mol. Chem. Neuropathol. 11:157–185.

    Google Scholar 

  • Burke, T. M., and Wolin, M. S. (1987). Hydrogen peroxide elicits pulmonary arterial relaxation and guanylate cyclase activation. Am. J. Physiol. 252:H721–H732.

    Google Scholar 

  • Butterfield, D. A., Hensley, K., Harris, M., Mattson, M., and Carney, J. (1994). β-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: Implications to Alzheimer's disease. Biochem. Biophys. Res. Commun. 200:710–715.

    Google Scholar 

  • Chan, P. H., Fishman, R. A., Longar, S., Chen, S., and Yu, A. (1985). Cellular and molecular effects of polyunsaturated fatty acids in brain ischemia and injury. Prog. Brain Res. 63:227–235.

    Google Scholar 

  • Cheeseman, K. H., and Slater, T. F. (1993). An introduction to free radical biochemistry. Br. Med. Bull. 49:481–493.

    Google Scholar 

  • Choe, M., Jackson, C., and Yu, B. P. (1995). Lipid peroxidation contributes to age-related membrane rigidity. Free Radical Biol. Med. 18:977–984.

    Google Scholar 

  • Cohen, G., and Werner, P. (1994). Free radicals, oxidative stress, and neurodegeneration. In Calne, D. B. (ed.), Neurodegenerative Diseases, W. B. Saunders, Philadelphia, pp. 139–161.

    Google Scholar 

  • Demediuk, P., Saunders, R. D., Anderson, D. K., Means, E. D., and Horrocks, L. A. (1982). Membrane lipid changes in laminectomized and traumatized cat spinal cord. Proc. Natl. Acad. Sci. USA 82:7071–7075.

    Google Scholar 

  • Dexter, D. T., Carter, C. J., Wells, F. R., Javoy-Agid, F., Agid, Y., Lees, A., Jenner, P., and Marsden, C. D. (1989). Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J. Neurochem. 52:381–389.

    Google Scholar 

  • Edgar, A. D., Strosznajder, J., and Horrocks, L. A. (1982). Activation of ethanolamine phospholipase A2 in brain during ischemia. J. Neurochem. 39:1111–1116.

    Google Scholar 

  • Erin, A. N., Gulyaeva, N. V., and Nikushkin, E. V. (1994). Free-radical mechanisms in cerebral pathologies (review). Biull. Eksp. Biol. Med. 118:343–348.

    Google Scholar 

  • Evans, P. H. (1993). Free radicals in brain metabolism and pathology. Br. Med. Bull. 49:577–587.

    Google Scholar 

  • Farooqui, A. A., and Horrocks, L. A. (1991). Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16:171–191.

    Google Scholar 

  • Farooqui, A. A., and Horrocks, L. A. (1994a). Excitotoxicity and neurological disorders: Involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.

    Google Scholar 

  • Farooqui, A. A., and Horrocks, L. A. (1994b). Involvement of glutamate receptors, lipases, and phospholipases in long-term potentiation and neurodegeneration. J. Neurosci. Res. 38:6–11.

    Google Scholar 

  • Farooqui, A. A., Liss, L., and Horrocks, L. A. (1988). Neurochemical aspects of Alzheimer's disease: Involvement of membrane phospholipids. Metab. Brain Dis. 3:19–35.

    Google Scholar 

  • Farooqui, A. A., Liss, L., and Horrocks, L. A. (1990). Elevated activities of lipases and lysophospholipases in Alzheimer's disease. Dementia 1:208–214.

    Google Scholar 

  • Farooqui, A. A., Haun, S. E., and Horrocks, L. A. (1994). Ischemia and hypoxia. In Siegel, G. J., Agranoff, B. W., Albers, R. W., and Molinoff, P. B. (eds.), Basic Neurochemistry, Raven Press, New York, pp. 867–883.

    Google Scholar 

  • Farooqui, A. A., Wells, K., and Horrocks, L. A. (1995). Breakdown of membrane phospholipids in Alzheimer disease: Involvement of excitatory amino acid receptors. Mol. Chem. Neuropathol. 25:155–173.

    Google Scholar 

  • Gajewski, M., Laskowska-Bozek, H., Orlewski, P., Maslinski, S., and Ryzewski, J. (1988). Influence of lipid peroxidation and hydrogen peroxide on muscarinic cholinergic receptors and ATP level in rat myocytes and lymphocytes. Int. J. Tissue Reac. 10:281–289.

    Google Scholar 

  • Geddes, J. W., and Mattson, M. P. (1995). Tau hyperphosphorylation and free radicals in PHF formation: Early or late events? (commentary). Neurobiol. Aging 16:399–402.

    Google Scholar 

  • Gopalakrishna, R., and Anderson, W. B. (1989). Ca2+-and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain. Proc. Natl. Acad. Sci. USA 86:6758–6762.

    Google Scholar 

  • Halliwell, B. (1994). Free radicals, antioxidants, and human disease: Curiosity, cause, or consequence? Lancet 344:721–724.

    Google Scholar 

  • Halliwell, B. (1995). Antioxidant characterization: Methodology and mechanism (commentary). Biochem. Pharmacol. 49:1341–1348.

    Google Scholar 

  • Harris, M. E., Hensley, K., Butterfield, D. A., Leedle, R. A., and Carney, J. M. (1995). Direct evidence of oxidative injury produced by the Alzheimer's β-amyloid peptide (1–40) in cultured hippocampal neurons. Exp. Neurol. 131:193–202.

    Google Scholar 

  • Hirashima, Y., Farooqui, A. A., Mills, J. S., and Horrocks, L. A. (1992). Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol. J. Neurochem. 59:708–714.

    Google Scholar 

  • Jellinger, K., Paulus, W., Grundke-Iqbal, I., Riederer, P., and Youdim, M. B. H. (1990). Brain iron and ferritin in Parkinson's and Alzheimer's diseases. J. Neural Transm. Park. Dis. Dement. Sect. 2:327–340.

    Google Scholar 

  • Jenner, P. (1994). Oxidative damage in neurodegenerative disease. Lancet 344:796–798.

    Google Scholar 

  • Kagan, V. E., Kopaladze, R. A., Prilipko, L. L., and Savov, V. M. (1983). Role of lipid peroxidation in serotonin receptor injury on onset of epileptiform seizures. Biull. Eksp. Biol. Med. (Engl. trans.) 96:16–18.

    Google Scholar 

  • Mishra, O. P., Dalivoria-Papadopoulous, M., Cahillane, G., and Wagerle, L. C. (1990). Lipid peroxidation as the mechanism of modification of brain 5'-nucleotidase activity in vitro. Neurochem. Res. 15:237–242.

    Google Scholar 

  • Molina, J. A., Jiménez-Jiménez, F. J., Fernandez-Calle, P., Lalinde, L., Tenias, J. M., Pondal, M., Vazquez, A., and Codoceo, R. (1992). Serum lipid peroxides in patients with Parkinson's disease. Neurosci. Lett. 136:137–140.

    Google Scholar 

  • Morgan, M. S., Darrow, R. M., Nafz, M. A., and Varandani, P. T. (1985). Participation of cellular thiol/disulphide groups in the uptake, degradation and bioactivity of insulin in primary cultures of rat hepatocytes. Biochem. J. 225:349–356.

    Google Scholar 

  • Muakkassah-Kelly, S. F., Andresen, J. W., Shih, J. C., and Hochstein, P. (1982). Decreased [3H]serotonin and [3H]spiperone binding consequent to lipid peroxidation in rat cortical membranes. Biochem. Biophys. Res. Commun. 194:1003–1010.

    Google Scholar 

  • Nitsch, R., and Frotscher, M. (1992). Reduction of posttraumatic transneuronal “early gene” activation and dendritic atrophy by the N-methyl-D-aspartate receptor antagonist MK-801. Proc. Natl. Acad. Sci. USA 89:5197–5200.

    Google Scholar 

  • Novelli, A., Reilly, J. A., Lysko, P. G., and Henneberry, R. C. (1988). Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res. 451:205–212.

    Google Scholar 

  • Palmer, A. M., and Burns, M. A. (1994). Selective increase in lipid peroxidation in the inferior temporal cortex in Alzheimer's disease. Brain Res. 645:338–342.

    Google Scholar 

  • Pellegrini-Giampietro, D. E., Cherici, G., Alesiani, M., Carla, V., and Moroni, F. (1988). Excitatory amino acid release from rat hippocampal slices as a consequence of free-radical formation. J. Neurochem. 51:1960–1963.

    Google Scholar 

  • Pellegrini-Giampietro, D. E., Cherici, G., Alesiani, M., Carla, V., and Moroni, F. (1990). Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage. J. Neurosci. 10:1035–1041.

    Google Scholar 

  • Pettegrew, J. W. (1989). Molecular insights into Alzheimer disease. Ann. N.Y. Acad. Sci. 568:5–28.

    Google Scholar 

  • Porter, N. A., Caldwell, S. E., and Mills, K. A. (1995). Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30:277–290.

    Google Scholar 

  • Pruijn, F. B., Van Gelderen, H., and Bast, A. (1989). The effects of radical stress and N-ethylmaleimide on rat hepatic α1-adrenergic receptors. Toxicol. Lett. 45:73–82.

    Google Scholar 

  • Rordorf, G., Uemura, Y., and Bonventre, J. V. (1991). Characterization of phospholipase A2 (PLA2) activity in gerbil brain: Enhanced activities of cytosolic, mitochondrial, and microsomal forms after ischemia and reperfusion. J. Neurosci. 11:1829–1836.

    Google Scholar 

  • Saunders, R., and Horrocks, L. A. (1987). Eicosanoids, plasma membranes, and molecular mechanisms of spinal cord injury. Neurochem. Pathol. 7:1–22.

    Google Scholar 

  • Schiller, H. J., Reilly, P. M., and Bulkley, G. B. (1993). Antioxidant therapy. Crit. Care Med. 21:S92–S102.

    Google Scholar 

  • Secrist, J. P., Burns, L. A., Karnitz, L., Koretzky, G. A., and Abraham, R. T. (1993). Stimulatory effects of the protein tyrosine phosphatase inhibitor, pervanadate, on T cell activation events. J. Biol. Chem. 268:5886–5893.

    Google Scholar 

  • Sevanian, A., and Kim, E. (1986). Phospholipase A2 dependent release of fatty acids from peroxidized membrane. J. Free Radicals Biol. Med. 1:263–271.

    Google Scholar 

  • Sobolev, A., Tertov, V. V., and Rybalkin, S. D. (1983). A study of rat liver guanylate cyclase activation by peroxides of fatty acids, carbonyl compounds and biogenic amines. Biochim. Biophys. Acta 756:92–105.

    Google Scholar 

  • Söderberg, M., Edlund, C., Alafuzoff, I., Kristensson, K., and Dallner, G. (1992). Lipid composition in different regions of the brain in Alzheimer's disease/senile dementia of Alzheimer's type. J. Neurochem. 59:1646–1653.

    Google Scholar 

  • Subbarao, K. V., Richardson, J. S., and Ang, L. C. (1990). Autopsy samples of Alzheimer's cortex show increased peroxidation in vitro. J. Neurochem. 55:342–345.

    Google Scholar 

  • Thang, N. X., Borsodi, A., and Wolleman, M. (1980). Effects of phospholipids on the binding of [3H]dihydroalprenolol to the β-adrenergic receptor of rabbit heart membranes. Biochem. Pharmacol. 29:2791–2797.

    Google Scholar 

  • Van der Vliet, A., and Bast, A. (1991). Hydrogen peroxide reduces beta-adrenoceptor function in the rat small intestine. Eur. J. Pharmacol. 199:153–156.

    Google Scholar 

  • Van der Vliet, A., and Bast, A. (1992). Effect of oxidative stress on receptors and signal transmission. Chem. Biol. Interact. 85:95–116.

    Google Scholar 

  • Van Kuijk, F. J. G. M., Sevanian, A., Handelman, G. J., and Dratz, E. A. (1987). A new role for phospholipase A2: Protection of membranes from lipid peroxidation damage. Trends Biochem. Sci. 12:31–34.

    Google Scholar 

  • Volicer, L., and Crino, P. B. (1990). Involvement of free radicals in dementia of the Alzheimer type: A hypothesis. Neurobiol. Aging 11:567–571.

    Google Scholar 

  • Wells, K., Farooqui, A. A., Liss, L., and Horrocks, L. A. (1995). Neural membrane phospholipids in Alzheimer disease (submitted for publication).

  • Whisler, R. L., Goyette, M. A., Grants, I. S., and Newhouse, Y. G. (1995). Sublethal levels of oxidant stress stimulate multiple serine/threonine kinases and suppress protein phosphatases in Jurkat T cells. Arch. Biochem. Biophys. 319:23–35.

    Google Scholar 

  • Xu, J., Hsu, C. Y., Liu, T. H., Hogan, E. L., Perot, P. L., Jr., and Tai, H. (1990). Leukotriene B4 release and polymorphonuclear cell infiltration in spinal cord injury. J. Neurochem. 55:907–912.

    Google Scholar 

  • Yeagle, P. (1989). Lipid regulation of cell membrane structure and function. FASEB J. 3:1833–1842.

    Google Scholar 

  • Yoshida, S., Inoh, S., Asano, T., Sano, K., Kubota, M., Shimazaki, H., and Ueta, N. (1980). Effect of transient ischemia on free fatty acids and phospholipids in the gerbil brain. J. Neurosurg. 53:323–331.

    Google Scholar 

  • Yu, B. P. (1993). Oxidative damage by free radicals and lipid peroxidation in aging. In Yu, B. P. (ed.), Free Radicals in Aging, CRC Press, Boca Raton, FL, pp. 57–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farooqui, A.A., Horrocks, L.A. Lipid Peroxides in the Free Radical Pathophysiology of Brain Diseases. Cell Mol Neurobiol 18, 599–608 (1998). https://doi.org/10.1023/A:1020625717298

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020625717298

Navigation